scholarly journals Ecosystem models of Lake Victoria (East Africa): exploring the sensitivity of ecosystem effects of fishing to model choice

2018 ◽  
Author(s):  
Vianny Natugonza ◽  
Cameron Ainsworth ◽  
Erla Sturludóttir ◽  
Laban Musinguzi ◽  
Richard Ogutu-Ohwayo ◽  
...  

Ecosystem simulation models are valuable tools for strengthening and promoting ecosystem-based fisheries management (EBFM). However, utility of these models in practical fisheries management is often undermined by lack of simple means to test the effect of uncertainty on model outputs. Recently, the use of multiple ecosystem models has been recommended as an ‘insurance’ against effects of uncertainty that comes with modelling complex systems. The assumption is that if models with different structure and formulation give consistent results, then, policy prescriptions are robust (i.e. less sensitive to model choice). However, information on the behaviour of trends from structurally-distinct ecosystem models with respect to changes in fishing conditions is limited, especially for freshwater systems. In this study, we compared outputs of two ecosystem models, Ecopath with Ecosim (EwE) and Atlantis, for Lake Victoria under different fishing pressure scenarios. We compared model behaviour at the ecosystem level, and also at a level of functional groups. At functional group level, we determined two questions: what is the change in the targeted group, and what are the consequent effects in other parts of the system? Overall results suggest that different model formulations can provide similar qualitative predictions (direction of change), especially for targeted groups with similar trophic interactions and adequate data for parameterization and calibration. However, considerable variations in predictions (where models predict opposite trends) may also occur due to inconsistencies in the strength of the aggregate multi-species interactions between species and models, and not necessarily due to model detail and complexity. Therefore, with more information and data, especially on diet, and comparable representation of feeding interactions across models, ecosystem models with distinct structure and formulation can give consistent policy evaluations for most biological groups.


2019 ◽  
Vol 77 (2) ◽  
pp. 500-514 ◽  
Author(s):  
Chuanbo Guo ◽  
Caihong Fu ◽  
Norm Olsen ◽  
Yi Xu ◽  
Arnaud Grüss ◽  
...  

Abstract This study incorporated two pathways of environmental forcing (i.e. “larval mortality forcing” and “somatic growth forcing”) into an end-to-end ecosystem model (Object-oriented Simulator of Marine ecOSystEms, OSMOSE) developed for the Pacific North Coast Integrated Management Area (PNCIMA) off western Canada, in order to evaluate alternative fisheries management strategies under environmental changes. With a suite of ecosystem-level indicators, the present study first compared the ecosystem effects of different pathways of environmental forcing scenarios; and then evaluated the alternative fisheries management strategies which encompassed a series of fishing mortality rates relative to FMSY (the fishing mortality rate that produces maximum sustainable yield) and a set of precautionary harvest control rules (HCRs). The main objectives of this study were to (i) explore the ecosystem effects of different environmental forcing scenarios; (ii) identify the impacts of different fishing mortality rates on marine ecosystem structure and function; and (iii) evaluate the ecosystem-level performance of various levels of precautionary HCRs. Results indicated that different pathways of environmental forcing had different ecosystem effects and incorporating appropriate HCRs in the fisheries management process could help maintain ecosystem health and sustainable fisheries. This study provides important information on future fisheries management options within similar marine ecosystems that are facing global changes.



2021 ◽  
Vol 8 ◽  
Author(s):  
Desiree Tommasi ◽  
Yvonne deReynier ◽  
Howard Townsend ◽  
Chris J. Harvey ◽  
William H. Satterthwaite ◽  
...  

One of the significant challenges to using information and ideas generated through ecosystem models and analyses for ecosystem-based fisheries management is the disconnect between modeling and management needs. Here we present a case study from the U.S. West Coast, the stakeholder review of NOAA’s annual ecosystem status report for the California Current Ecosystem established by the Pacific Fisheries Management Council’s Fisheries Ecosystem Plan, showcasing a process to identify management priorities that require information from ecosystem models and analyses. We then assess potential ecosystem models and analyses that could help address the identified policy concerns. We screened stakeholder comments and found 17 comments highlighting the need for ecosystem-level synthesis. Policy needs for ecosystem science included: (1) assessment of how the environment affects productivity of target species to improve forecasts of biomass and reference points required for setting harvest limits, (2) assessment of shifts in the spatial distribution of target stocks and protected species to anticipate changes in availability and the potential for interactions between target and protected species, (3) identification of trophic interactions to better assess tradeoffs in the management of forage species between the diet needs of dependent predators, the resilience of fishing communities, and maintenance of the forage species themselves, and (4) synthesis of how the environment affects efficiency and profitability in fishing communities, either directly via extreme events (e.g., storms) or indirectly via climate-driven changes in target species availability. We conclude by exemplifying an existing management process established on the U.S. West Coast that could be used to enable the structured, iterative, and interactive communication between managers, stakeholders, and modelers that is key to refining existing ecosystem models and analyses for management use.



2002 ◽  
Vol 59 (9) ◽  
pp. 1429-1440 ◽  
Author(s):  
Jason S Link ◽  
Jon K.T Brodziak ◽  
Steve F Edwards ◽  
William J Overholtz ◽  
David Mountain ◽  
...  

We examined a suite of abiotic, biotic, and human metrics for the northeast U.S. continental shelf ecosystem at the aggregate, community, and system level (>30 different metrics) over three decades. Our primary goals were to describe ecosystem status, to improve understanding of the relationships between key ecosystem processes, and to evaluate potential reference points for ecosystem-based fisheries management (EBFM). To this end, empirical indicators of ecosystem status were examined and standard multivariate statistical methods were applied to describe changes in the system. We found that (i) a suite of metrics is required to accurately characterize ecosystem status and, conversely, that focusing on a few metrics may be misleading; (ii) assessment of ecosystem status is feasible for marine ecosystems; (iii) multivariate points of reference can be determined for EBFM; and (iv) the concept of reference directions could provide an ecosystem level analog to single-species reference points.



Author(s):  
Veronica Mpomwenda ◽  
Daði Mar Kristófersson ◽  
Anthony Taabu‐Munyaho ◽  
Tumi Tómasson ◽  
Jón Geir Pétursson


<strong><em>Abstract. </em></strong>We review the impacts of towed gears on benthic habitats and communities and predict the consequences of these impacts for ecosystem processes. Our emphasis is on the additive and synergistic large-scale effects of fishing, and we assess how changes in the distribution of fishing activity following management action are likely to affect production, turnover time, and nutrient fluxes in ecosystems. Analyses of the large-scale effects of fishing disturbance show that the initial effects of fishing on a habitat have greater ecosystem consequences than repeated fishing in fished areas. As a result, patchy fishing effort distributions have lower total impacts on the ecosystem than random or uniform effort distributions. In most fisheries, the distribution of annual fishing effort within habitats is more patchy than random, and patterns of effort are maintained from year to year. Our analyses suggest that many vulnerable species and habitats have only persisted in heavily fished ecosystems because effort is patchy. Ecosystem-based fisheries management involves taking account of the ecosystem effects of fishing when setting management objectives. One step that can be taken toward ecosystem-based fisheries management is to make an a priori assessment of the ecosystem effects of proposed management actions such as catch controls, effort controls, and technical measures. We suggest a process for predicting the ecosystem consequences of management action. This requires information on habitat distributions, models to predict changes in the spatial distribution of fleets following management action, and models of the impacts of trawling disturbance on ecosystem processes. For each proposed management action, the change in disturbance affecting different habitat types would be predicted and used to forecast the consequences for the ecosystem. These simulations would be used to produce a decision table, quantifying the consequences of alternative management actions. Actions that minimize the ecosystem effects of fishing could then be identified. In data-poor situations, we suggest that management strategies that maintain or maximize the patchiness of effort within habitat types are more consistent with the precautionary approach than those that lead to more uniform fishing effort distributions.



2019 ◽  
Vol 45 (6) ◽  
pp. 1260-1273 ◽  
Author(s):  
Vianny Natugonza ◽  
Cameron Ainsworth ◽  
Erla Sturludóttir ◽  
Laban Musinguzi ◽  
Richard Ogutu-Ohwayo ◽  
...  


2019 ◽  
Vol 76 (7) ◽  
pp. 2045-2059 ◽  
Author(s):  
Chuanbo Guo ◽  
Caihong Fu ◽  
Robyn E Forrest ◽  
Norm Olsen ◽  
Huizhu Liu ◽  
...  

Abstract In the context of ecosystem-based fisheries management, which should consider changing and uncertain environmental conditions, the development of ecosystem-based biological reference points (EBRPs) to account for important multi-species (MS) interactions, fishery operations, and climate change, is of paramount importance for sustainable fisheries management. However, EBRPs under varying plankton productivity states and fisheries management strategies are seldom developed, and the ecosystem effects of these changes are still largely unknown. In this study, ecosystem-based FMSY (fishing mortality rate at MSY) values were estimated within an end-to-end ecosystem model (OSMOSE) for three focused fish species (Pacific Herring, Clupea pallasii; Pacific Cod, Gadus macrocephalus; Lingcod, Ophiodon elongatus) under three plankton productivity states of differing plankton biomass at high, current, and low levels. In addition, ecosystem effects were compared across different plankton productivity and fisheries management strategies with the latter consisting of two fishery scenarios (i.e. single-species-focused (SS) and MS-focused), various fishing mortality rates, and two harvest policies (with and without harvest control rules, HCRs). Main findings of this study include: (i) plankton productivity change affected the values of ecosystem-based FMSY, which increased as plankton productivity states changed from low to high plankton biomass; (ii) ecosystem-based FMSY for Pacific Herring and Pacific Cod stocks increased when fishery scenarios shifted from SS-focused to MS-focused; (iii) fisheries management incorporating HCR yielded more stable system catch and system biomass; and (iv) high plankton biomass combined with fisheries management using HCR could maintain stable ecosystem production and sustainable fisheries. Based on our findings, we highlight possible adaptive fisheries management strategies in the face of future climate and ocean changes. Overall, EBRPs complement SS stock assessments by incorporating key ecological processes and ecosystem properties, thus providing supporting evidence for better incorporation of ecosystem considerations into scientific advice for sustainable fisheries management.



2017 ◽  
Vol 34 (4) ◽  
pp. 403-413 ◽  
Author(s):  
Hendrik Stouten ◽  
Hans Polet ◽  
Aimé Heene ◽  
Xavier Gellynck


2016 ◽  
Vol 73 (9) ◽  
pp. 1372-1388 ◽  
Author(s):  
Hiroyuki Kurota ◽  
Murdoch K. McAllister ◽  
Eric A. Parkinson ◽  
N.T. Johnston

Ecosystem models are thought to offer advantages over single-species models in terms of management policy analysis. This hypothesis has proven difficult to test because of underlying system complexities, coupled with short time series and minimal contrast in environmental conditions or management policies. This paper presents a Bayesian statistical catch-at-age model to compare ecosystem models and test hypotheses about the management of a recreational fishery based on a predator–prey system using a relatively simple and data-rich ecosystem in a large lake, Kootenay Lake, British Columbia, where kokanee (Oncorhynchus nerka) are the prey and piscivorous rainbow trout (Oncorhynchus mykiss) are the predator. A model that explicitly incorporates the predator–prey interaction explained long-term data of field and fishery surveys much better than single-species models without any interactions. Minimally realistic multispecies models that treated predation identically but differed in their representation of the effects of prey abundance on predator mortality produced quite different results. Management reference points, for example, differed considerably between the models. Our study thus emphasizes that the choice of a management approach for this type of fishery will depend strongly on the model form and should take into consideration results from empirically based models that include species interactions.



Sign in / Sign up

Export Citation Format

Share Document