scholarly journals The KZFP/KAP1 system controls transposable elements-embedded regulatory sequences in adult T cells

2019 ◽  
Author(s):  
Flavia Marzetta ◽  
Laia Simó-Riudalbas ◽  
Julien Duc ◽  
Evarist Planet ◽  
Sonia Verp ◽  
...  

ABSTRACTTransposable elements-embedded regulatory sequences (TEeRS) are subjected to early embryonic repression through sequence-specific recruitment of KRAB zinc finger proteins (KZFPs), their cofactor KAP1/TRIM28 and associated chromatin modifiers. This modulates the TEeRS-mediated regulation of gene expression in embryonic stem cells (ESCs) and leads to DNA methylation-induced silencing. However, KZFPs are broadly expressed in adult tissues, suggesting that they control TEeRS throughout life. Confirming this hypothesis, we reveal here that the KZFP/KAP1 system exerts a highly dynamic control of TEeRS in adult human CD4+ T lymphocytes. First, we observed that in these cells many TEs are still bound by KAP1, the recruitment of which is dynamically regulated upon T cell receptor stimulation. Second, we found that KAP1 depletion induces broad transcriptional alterations in T cells, with de-repression of TE-based regulatory elements leading to the illegitimate activation of nearby genes. Finally, we show that the tissue-restricted expression of KZFPs correlates with KAP1-mediated lineage-specific chromatin signatures and transcriptional repression. These data support a model where TE-targeting KZFPs and KAP1 are important regulators of gene expression in adult human cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 523-523
Author(s):  
Marco De Gobbi ◽  
Vip Viprakasit ◽  
Pieter J. de Jong ◽  
Yuko Yoshinaga ◽  
Jan-Fang Cheng ◽  
...  

Abstract The human α globin cluster includes an embryonic gene ζ and 2 fetal/adult genes (α2 and α1) arranged along the chromosome in the order in which they are expressed in development (5′-ζ-pseudoζ- αD- α2-α1-𝛉-3′). Fully activated expression of these genes in erythroid cells depends on upstream regulatory elements of which HS-40, located 40kb upstream of the cluster, appears to exert the greatest effect. We have recently shown that during terminal differentiation, key transcription factors (GATA-2, GATA-1, NF-E2, SCL complex) sequentially bind the α promoters and their regulatory elements and a domain of histone acetylation develops which eventually encompasses the entire α globin cluster including the upstream regulatory sequences. α-thalassemia most frequently results from deletions or point mutations affecting the structural α globin genes, but may also result from rare sporadic deletions which remove the upstream regulatory sequences. In a single family α globin expression was silenced by a mutation which drives an anti-sense RNA through the α gene. Alpha thalassemia may also result from inherited and acquired mutations in a trans-acting factor called ATRX. Over the past few years we have continued to screen for new mechanisms which lead to α thalassemia and thereby elucidate new principles underlying the regulation of gene expression in hemopoiesis. Here we describe a new mechanism of α thalassemia occurring in Pacific Islanders in whom we could detect no mutations or rearrangements in the α globin gene locus. Despite this, extensive genetic analysis showed unequivocally that the causative mutation is linked to the terminal 169kb of chromosome 16 (Viprakasit et al accompanying abstract). Analysis of globin synthesis, steady state RNA levels and detection of RNA in situ demonstrated that the mutation downregulates α globin transcription. To identify the mutation, we constructed a new BAC library from an affected homozygote, isolated and re-sequenced the candidate region and focussed further analysis on 8 SNPS within the α globin cluster, one of which creates a new GATA-1 binding site (GACA>GATA). Using primary erythroblasts from normal individuals and patients with this form of thalassemia, together with interspecific hybrids containing either the normal or abnormal copy of chromosome 16, we have shown that this SNP creates a new binding site in vivo for GATA-1 and the SCL complex. Furthermore, the chromatin at this site becomes activated as judged by acetylation of histone H3 and H4 (H3ac2 and H4ac4) and methylation of histone H3 (H3K4me2). Based on these data we postulate that an active transcriptional complex binding this new GATA site created by the SNP-mutation, could distract the upstream regulatory regions, which normally interact with the α globin promoter, and silence α globin gene expression. This model thus represents a new example of α globin gene down-regulation and a new mechanism by which gene expression can be perturbed during hemopoiesis.


2014 ◽  
Author(s):  
Aleksandra Pekowska ◽  
Bernd Klaus ◽  
Felix Alexander Klein ◽  
Simon Anders ◽  
Malgorzata Oles ◽  
...  

Regulation of gene expression underlies cell identity. Chromatin structure and gene activity are linked at multiple levels, via positioning of genomic loci to transcriptionally permissive or repressive environments and by connecting cis-regulatory elements such as promoters and enhancers. However, the genome-wide dynamics of these processes during cell differentiation has not been characterized. Using tethered chromatin conformation capture (TCC) sequencing we determined global three-dimensional chromatin structures in mouse embryonic stem (ES) and neural stem (NS) cell derivatives. We found that changes in the propensity of genomic regions to form inter-chromosomal contacts are pervasive in neural induction and are associated with the regulation of gene expression. Moreover, we found a pronounced contribution of euchromatic domains to the intra-chromosomal interaction network of pluripotent cells, indicating the existence of an ES cell-specific mode of chromatin organization. Mapping of promoter-enhancer interactions in pluripotent and differentiated cells revealed that spatial proximity without enhancer element activity is a common architectural feature in cells undergoing early developmental changes. Activity-independent formation of higher-order contacts between cis-regulatory elements, predominant at complex loci, may thus provide an additional layer of transcriptional control.


2020 ◽  
Author(s):  
Rurika Oka ◽  
Mattijs Bliek ◽  
Huub C.J. Hoefsloot ◽  
Maike Stam

AbstractBackgroundDNA methylation is an important factor in the regulation of gene expression and genome stability. High DNA methylation levels are associated with transcriptional repression. In mammalian systems, unmethylated, low methylated and fully methylated regions (UMRs, LMRs, and FMRs, respectively) can be distinguished. UMRs are associated with proximal regulatory regions, while LMRs are associated with distal regulatory regions. Although DNA methylation is mainly limited to the CG context in mammals, while it occurs in CG, CHG and CHH contexts in plants, UMRs and LMRs were expected to occupy similar genomic sequences in both mammals and plants.ResultsThis study investigated major model and crop plants such as Arabidopsis thaliana, tomato (Solanum lycopersicum), rice (Oryza sativa) and maize (Zea mays), and shows that plant genomes can also be subdivided in UMRs, LMRs and FMRs, but that LMRs are mainly present in the CHG context rather than the CG context. Strikingly, the identified CHG LMRs were enriched in transposable elements rather than regulatory regions. Maize candidate regulatory regions overlapped with UMRs. LMRs were enriched for heterochromatic histone modifications and depleted for DNase accessibility and H3K9 acetylation. CHG LMRs form a distinct, abundant cluster of loci, indicating they have a different role than FMRs.ConclusionsBoth mammalian and plant genomes can be segmented in three distinct classes of loci, UMRs, LMRs and FMRs, indicating similar underlying mechanisms. Unlike in mammals, distal regulatory sequences in plants appear to overlap with UMRs instead of LMRs. Our data indicate that LMRs in plants have a different function than those in mammals.


2018 ◽  
Author(s):  
Christopher D. Todd ◽  
Özgen Deniz ◽  
Miguel R. Branco

AbstractThe recurrent invasion and expansion of transposable elements (TEs) throughout evolution brought with it a vast array of coding and non-coding sequences that can serve as substrates for natural selection. Namely, TEs are thought to have contributed to the establishment of gene regulatory networks via their cis-acting elements. Both the embryonic and extraembryonic lineages of the early mouse embryo are thought to have benefited from the co-option of TEs as distal enhancer elements. However, there is little to no evidence that these particular TEs play significant roles in the regulation of gene expression. Here we tested for roles of TEs as enhancers in mouse embryonic and trophoblast stem cells by combining bioinformatic analyses with genetic and epigenetic editing experiments. Epigenomic and transcriptomic data from wildtype cells suggested that a large number of TEs played a role in the establishment of highly tissue-specific gene expression programmes. Through genetic editing of individual TEs we confirmed a subset of these regulatory relationships. However, a wider survey via CRISPR interference of RLTR13D6 elements in embryonic stem cells revealed that only a minority play significant roles in gene regulation. Our results suggest that a small proportion of TEs contribute to the mouse pluripotency regulatory network, and highlight the importance of functional experiments when evaluating the role of TEs in gene regulation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Julius Judd ◽  
Hayley Sanderson ◽  
Cédric Feschotte

Abstract Background Transposable elements are increasingly recognized as a source of cis-regulatory variation. Previous studies have revealed that transposons are often bound by transcription factors and some have been co-opted into functional enhancers regulating host gene expression. However, the process by which transposons mature into complex regulatory elements, like enhancers, remains poorly understood. To investigate this process, we examined the contribution of transposons to the cis-regulatory network controlling circadian gene expression in the mouse liver, a well-characterized network serving an important physiological function. Results ChIP-seq analyses reveal that transposons and other repeats contribute ~ 14% of the binding sites for core circadian regulators (CRs) including BMAL1, CLOCK, PER1/2, and CRY1/2, in the mouse liver. RSINE1, an abundant murine-specific SINE, is the only transposon family enriched for CR binding sites across all datasets. Sequence analyses and reporter assays reveal that the circadian regulatory activity of RSINE1 stems from the presence of imperfect CR binding motifs in the ancestral RSINE1 sequence. These motifs matured into canonical motifs through point mutations after transposition. Furthermore, maturation occurred preferentially within elements inserted in the proximity of ancestral CR binding sites. RSINE1 also acquired motifs that recruit nuclear receptors known to cooperate with CRs to regulate circadian gene expression specifically in the liver. Conclusions Our results suggest that the birth of enhancers from transposons is predicated both by the sequence of the transposon and by the cis-regulatory landscape surrounding their genomic integration site.


2021 ◽  
Author(s):  
Weizheng Liang ◽  
Guipeng Li ◽  
Huanhuan Cui ◽  
Yukai Wang ◽  
Wencheng Wei ◽  
...  

AbstractDifferences in gene expression, which can arise from divergence in cis-regulatory elements or alterations in transcription factors binding specificity, are one of the most important causes of phenotypic diversity during evolution. By protein sequence analysis, we observed high sequence conservation in the DNA binding domain (DBD) of the transcription factor Cdx2 across many vertebrates, whereas three amino acid changes were exclusively found in mouse Cdx2 (mCdx2), suggesting potential positive selection in the mouse lineage. Multi-omics analyses were then carried out to investigate the effects of these changes. Surprisingly, there were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Finally, we used rat-mouse allodiploid embryonic stem cells (RMES) to study the cis effects of Cdx2-mediated gene regulation between the two rodents. Interestingly, whereas Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.Author summaryOur study 1) represented a first systematic analysis of species-specific adaptation in DNA binding pattern of transcription factor. Although the mouse-specific amino acid changes did not manifest functional impact in our system, several explanations may account for it (See Discussion part for the detail); 2) represented a first study of cis-regulation between two reproductively isolated species by using a novel allodiploid system; 3) demonstrated a higher conservation of transcriptional output than that of DNA binding, suggesting the evolvability/plasticity of the latter; 4) finally provided a rich data resource for Cdx2 mediated regulation, including gene expression, chromatin accessibility and DNA binding etc.


1993 ◽  
Vol 13 (9) ◽  
pp. 5691-5701
Author(s):  
Y Wang ◽  
J A Kobori ◽  
L Hood

A gene encoding a novel CACCC box-binding protein that binds to the promoter region of the human T-cell receptor (TCR) V beta 8.1 gene and the mouse TCR alpha gene silencer has been cloned. This gene, termed ht beta, contains four zinc fingers of the class Cys2-X12-His2 that may be responsible for DNA binding and a highly negatively charged region that defines a putative transcriptional activation domain. Analysis of the expression of ht beta mRNA revealed similar expression levels and patterns in various cell lines. The bacterially expressed ht beta protein can bind to the CACCC box in both the human TCR V beta 8.1 gene promoter and the mouse TCR alpha gene silencer. The CACCC box is essential for efficient transcription of the V beta 8.1 promoter. Cotransfection with an ht beta expression plasmid and a reporter vector indicated that ht beta can activate human TCR V beta 8.1 gene transcription. ht beta also is able to counteract the silencing effect of the mouse TCR alpha gene silencer. The CACCC box has been found in almost all V beta 8.1 gene subfamily members and in both TCR alpha and beta gene enhancers in humans and mice. These results suggest that the CACCC box-binding protein may have an important regulatory function for TCR gene expression in alpha beta T cells versus gamma delta T cells.


2019 ◽  
Author(s):  
Tal Einav ◽  
Rob Phillips

AbstractAlthough the key promoter elements necessary to drive transcription inEscherichia colihave long been understood, we still cannot predict the behavior of arbitrary novel promoters, hampering our ability to characterize the myriad of sequenced regulatory architectures as well as to design novel synthetic circuits. This work builds on a beautiful recent experiment by Urtechoet al.who measured the gene expression of over 10,000 promoters spanning all possible combinations of a small set of regulatory elements. Using this data, we demonstrate that a central claim in energy matrix models of gene expression – that each promoter element contributes independently and additively to gene expression – contradicts experimental measurements. We propose that a key missing ingredient from such models is the avidity between the -35 and -10 RNA polymerase binding sites and develop what we call arefined energy matrixmodel that incorporates this effect. We show that this the refined energy matrix model can characterize the full suite of gene expression data and explore several applications of this framework, namely, how multivalent binding at the -35 and -10 sites can buffer RNAP kinetics against mutations and how promoters that bind overly tightly to RNA polymerase can inhibit gene expression. The success of our approach suggests that avidity represents a key physical principle governing the interaction of RNA polymerase to its promoter.Significance StatementCellular behavior is ultimately governed by the genetic program encoded in its DNA and through the arsenal of molecular machines that actively transcribe its genes, yet we lack the ability to predict how an arbitrary DNA sequence will perform. To that end, we analyze the performance of over 10,000 regulatory sequences and develop a model that can predict the behavior of any sequence based on its composition. By considering promoters that only vary by one or two elements, we can characterize how different components interact, providing fundamental insights into the mechanisms of transcription.


Sign in / Sign up

Export Citation Format

Share Document