Identification ofcis-Acting Regulatory Elements Controlling Interleukin-4 Gene Expression in T Cells: Roles for NF-Y and NF-ATc:

1993 ◽  
Vol 13 (9) ◽  
pp. 5928.2-5928
Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4529-4538 ◽  
Author(s):  
Steve N. Georas ◽  
John E. Cumberland ◽  
Thomas F. Burke ◽  
Rongbing Chen ◽  
Ulrike Schindler ◽  
...  

Abstract The differentiation of naive T-helper (Th) cells into cytokine-secreting effector Th cells requires exposure to multiple signals, including exogenous cytokines. Interleukin-4 (IL-4) plays a major role in this process by promoting the differentiation of IL-4–secreting Th2 cells. In Th2 cells, IL-4 gene expression is tightly controlled at the level of transcription by the coordinated binding of multiple transcription factors to regulatory elements in the proximal promoter region. Nuclear factor of activated T cell (NFAT) family members play a critical role in regulating IL-4 transcription and interact with up to five sequences (termed P0 through P4) in the IL-4 promoter. The molecular mechanisms by which IL-4 induces expression of the IL-4 gene are not known, although the IL-4–activated transcription factor signal transducer and activator of transcription 6 (Stat6) is required for this effect. We report here that Stat6 interacts with three binding sites in the human IL-4 promoter by electrophoretic mobility shift assays. These sites overlap the P1, P2, and P4 NFAT elements. To investigate the role of Stat6 in regulating IL-4 transcription, we used Stat6-deficient Jurkat T cells with different intact IL-4 promoter constructs in cotransfection assays. We show that, whereas a multimerized response element from the germline IgE promoter was highly induced by IL-4 in Stat6-expressing Jurkat cells, the intact human IL-4 promoter was repressed under similar conditions. We conclude that the function of Stat6 is highly dependent on promoter context and that this factor promotes IL-4 gene expression in an indirect manner.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4529-4538 ◽  
Author(s):  
Steve N. Georas ◽  
John E. Cumberland ◽  
Thomas F. Burke ◽  
Rongbing Chen ◽  
Ulrike Schindler ◽  
...  

The differentiation of naive T-helper (Th) cells into cytokine-secreting effector Th cells requires exposure to multiple signals, including exogenous cytokines. Interleukin-4 (IL-4) plays a major role in this process by promoting the differentiation of IL-4–secreting Th2 cells. In Th2 cells, IL-4 gene expression is tightly controlled at the level of transcription by the coordinated binding of multiple transcription factors to regulatory elements in the proximal promoter region. Nuclear factor of activated T cell (NFAT) family members play a critical role in regulating IL-4 transcription and interact with up to five sequences (termed P0 through P4) in the IL-4 promoter. The molecular mechanisms by which IL-4 induces expression of the IL-4 gene are not known, although the IL-4–activated transcription factor signal transducer and activator of transcription 6 (Stat6) is required for this effect. We report here that Stat6 interacts with three binding sites in the human IL-4 promoter by electrophoretic mobility shift assays. These sites overlap the P1, P2, and P4 NFAT elements. To investigate the role of Stat6 in regulating IL-4 transcription, we used Stat6-deficient Jurkat T cells with different intact IL-4 promoter constructs in cotransfection assays. We show that, whereas a multimerized response element from the germline IgE promoter was highly induced by IL-4 in Stat6-expressing Jurkat cells, the intact human IL-4 promoter was repressed under similar conditions. We conclude that the function of Stat6 is highly dependent on promoter context and that this factor promotes IL-4 gene expression in an indirect manner.


2020 ◽  
Vol 48 (19) ◽  
pp. 10890-10908
Author(s):  
Smitha Srinivasachar Badarinarayan ◽  
Irina Shcherbakova ◽  
Simon Langer ◽  
Lennart Koepke ◽  
Andrea Preising ◽  
...  

Abstract Although endogenous retroviruses (ERVs) are known to harbor cis-regulatory elements, their role in modulating cellular immune responses remains poorly understood. Using an RNA-seq approach, we show that several members of the ERV9 lineage, particularly LTR12C elements, are activated upon HIV-1 infection of primary CD4+ T cells. Intriguingly, HIV-1-induced ERVs harboring transcription start sites are primarily found in the vicinity of immunity genes. For example, HIV-1 infection activates LTR12C elements upstream of the interferon-inducible genes GBP2 and GBP5 that encode for broad-spectrum antiviral factors. Reporter assays demonstrated that these LTR12C elements drive gene expression in primary CD4+ T cells. In line with this, HIV-1 infection triggered the expression of a unique GBP2 transcript variant by activating a cryptic transcription start site within LTR12C. Furthermore, stimulation with HIV-1-induced cytokines increased GBP2 and GBP5 expression in human cells, but not in macaque cells that naturally lack the GBP5 gene and the LTR12C element upstream of GBP2. Finally, our findings suggest that GBP2 and GBP5 have already been active against ancient viral pathogens as they suppress the maturation of the extinct retrovirus HERV-K (HML-2). In summary, our findings uncover how human cells can exploit remnants of once-infectious retroviruses to regulate antiviral gene expression.


1993 ◽  
Vol 13 (8) ◽  
pp. 4793-4805 ◽  
Author(s):  
S J Szabo ◽  
J S Gold ◽  
T L Murphy ◽  
K M Murphy

Activity of the murine interleukin-4 (IL-4) promoter was localized to several cis-acting elements present within the first 300 bp from the transcriptional initiation site. Five repeated elements, P0 to P4, that share the common consensus ATTTTCCNNT were located between -40 and -250, and each was shown to interact with the T-cell-specific factor NF(P). These distinct P sites appear functionally interchangeable and cooperatively confer cyclosporin A-sensitive and ionomycin-inducible promoter activity. NF(P) may be closely related to the cytoplasmic component of NF-AT (nuclear factor of activated T cells), a T-cell-specific factor essential for IL-2 gene transcription, as judged from indistinguishable molecular weights and protease fragmentation patterns of UV-photolabeled factors. Also, we identified an element in the IL-4 promoter with homology to the Y box common to all major histocompatibility complex class II gene promoters. Our data show that the IL-4 promoter Y box -114CTGATTGG-107 significantly enhances overall promoter activity, since point mutations within this element diminish promoter activity by 85%. The factor binding this region is indistinguishable from the cloned nuclear factor NF-Y, as judged from interactions with specific anti-NF-Y monoclonal and polyclonal antibodies. Last, we point out the presence of two sites that share sequence identity to the OAP region of the ARRE-1 site within the IL-2 promoter (K. S. Ullman, W. M. Flanagan, C. A. Edwards, and G. R. Crabtree, Science 254:558-562, 1991). These regions, -85GTGTAATA-78 and -245GTGTAATT-238, reside adjacent to the NF(P) binding sites P1 and P4 and bind a distinct nuclear factor.


2006 ◽  
Vol 290 (1) ◽  
pp. L66-L74 ◽  
Author(s):  
Joshua Rubenfeld ◽  
Jia Guo ◽  
Nitat Sookrung ◽  
Rongbing Chen ◽  
Wanpen Chaicumpa ◽  
...  

Lysophosphatidic acid (LPA) is a membrane-derived lysophospholipid with wide-ranging effects on multiple lung cells including airway epithelial and smooth muscle cells. LPA can augment migration and cytokine synthesis in lymphocytes, but its potential effects on Th2 cytokines have not been well studied. We examined the effects of physiological concentrations of LPA on IL-13 gene expression in human T cells. The Jurkat T cell line and human peripheral blood CD4+ T cells were incubated with LPA alone or with 1) pharmacological agonists of different signaling pathways, or 2) antibodies directed against the T cell receptor complex and costimulatory molecules. Luciferase-based reporter constructs driven by different lengths of the human IL-13 promoter were transfected by electroporation in Jurkat cells treated with and without LPA. The effects of LPA on IL-13 mRNA stability were examined using actinomycin D to halt ongoing transcription. Expression of mRNA encoding LPA2and LPP-1 increased with T cell activation. LPA augmented IL-13 secretion under conditions of submaximal T cell activation. This was observed using pharmacological agonists activating intracellular calcium-, PKC-, and cAMP-dependent signaling pathways, as well as antibodies directed against CD3 and CD28. LPA only slightly prolonged IL-13 mRNA half-life in submaximally stimulated Jurkat cells. In contrast, LPA significantly enhanced transcriptional activation of the IL-13 promoter via regulatory elements contained within proximal 312 bp. The effects of LPA on IL-13 promoter activation appeared to be distinct from those mediated by GATA-3. LPA can augment IL-13 gene expression in T cells, especially under conditions of submaximal activation.


2019 ◽  
Author(s):  
Rachel E. Gate ◽  
Min Cheol Kim ◽  
Andrew Lu ◽  
David Lee ◽  
Eric Shifrut ◽  
...  

AbstractGene regulatory programs controlling the activation and polarization of CD4+T cells are incompletely mapped and the interindividual variability in these programs remain unknown. We sequenced the transcriptomes of ~160k CD4+T cells from 9 donors following pooled CRISPR perturbation targeting 140 regulators. We identified 134 regulators that affect T cell functionalization, includingIRF2as a positive regulator of Th2polarization. Leveraging correlation patterns between cells, we mapped 194 pairs of interacting regulators, including known (e.g.BATFandJUN) and novel interactions (e.g.ETS1andSTAT6). Finally, we identified 80 natural genetic variants with effects on gene expression, 48 of which are modified by a perturbation. In CD4+T cells, CRISPR perturbations can influencein vitropolarization and modify the effects oftransandcisregulatory elements on gene expression.


2020 ◽  
Author(s):  
Dimitre R. Simeonov ◽  
Harikesh S. Wong ◽  
Jessica T. Cortez ◽  
Arabella Young ◽  
Zhongmei Li ◽  
...  

The majority of genetic variants associated with complex human autoimmune diseases reside in enhancers1–3, non-coding regulatory elements that control gene expression. In contrast with variants that directly alter protein-coding sequences, enhancer variants are predicted to tune gene expression modestly and function in specific cellular contexts4, suggesting that small alterations in the functions of key immune cell populations are sufficient to shape disease risk. Here we tested this concept by experimentally perturbing distinct enhancers governing the high affinity IL-2 receptor alpha chain (IL2RA; also known as CD25). IL2RA is an immune regulator that promotes the pro- and anti-inflammatory functions of conventional T cells (Tconvs) and regulatory T cells (Tregs), respectively, and non-coding genetic variants in IL2RA have been linked to multiple autoimmune disorders4. We previously tiled across the IL2RA locus using CRISPR-activation and identified a stimulation-responsive element (CaRE4) with an enhancer that modestly affects the kinetics of IL2RA expression in Tconvs5. This enhancer is conserved across species and harbors a common human SNP associated with protection from Type 1 Diabetes (T1D)5,6. We now identified an additional conserved enhancer, termed CaRE3 enhancer, which modestly affected steady state IL2RA expression in regulatory T cells (Tregs). Despite their seemingly subtle impact on gene expression, the CaRE3 and CaRE4 enhancers had pronounced yet divergent effects on the incidence of diabetes in autoimmune prone animals. Deletion of the conserved CaRE4 enhancer completely protected against autoimmune diabetes even in animals treated with an immunostimulating anti-PD1 checkpoint inhibitor, whereas deletion of the CaRE3 enhancer accelerated spontaneous disease progression. Quantitative multiplexed imaging of the pancreatic lymph nodes (panLNs) revealed that each enhancer deletion preferentially affected the protein expression levels of IL2RA in activated Tconvs or Tregs, reciprocally tuning local competition for IL-2 input signals. In animals lacking the CaRE4 enhancer, skewed IL-2 signaling favored Tregs, increasing their local density around activated Tconvs to strongly suppress emergence of autoimmune effectors. By contrast, in animals lacking the CaRE3 enhancer, IL-2 signals were skewed towards activated Tconvs, promoting their escape from Treg control. Collectively, this work illustrates how subtle changes in gene regulation due to non-coding variation can significantly alter disease progression and how distinct enhancers controlling the same gene can have opposing effects on disease outcomes through cell type-selective activity.


2013 ◽  
Vol 82 (2) ◽  
pp. 131-134 ◽  
Author(s):  
Yousuke Maeda ◽  
Kana Yamamoto ◽  
Hiromichi Ohtsuka ◽  
Takaaki Ando ◽  
Michiko Tomioka ◽  
...  

An interaction between the conceptus and the immune system of animals is important during implantation. The aim of this study was to clarify the gene expression of T cell subsets in gravid cows during the preimplantation period. Peripheral blood from 14 Holstein dairy cows was taken 14 days after artificial insemination. Based on the gravidity, cows were divided into gravid (n = 8) and nongravid (n = 6) groups. Mononuclear cells from peripheral blood were stimulated with phytohaemagglutinin and then CD4+, CD8+, and WC1+ γδ T cell subsets were isolated using magnetic cell sorting. The expression of interferon γ, interleukin 4, and progesterone induced blocking factor were determined using real-time PCR. The expression of interleukin 4 and progesterone induced blocking factor was significantly higher in WC1+ γδ T cells from gravid cows. In addition, interleukin 4 expression in WC1+ γδ T cells from gravid cows was significantly higher than that in CD4+ and CD8+ T cells. This study describes for the first time the important role of WC1+ γδ T cells during the preimplantation period in cows.


Sign in / Sign up

Export Citation Format

Share Document