scholarly journals Fate plasticity and reprogramming in genetically distinct populations of Danio leucophores

2019 ◽  
Author(s):  
Victor Lewis ◽  
Lauren Saunders ◽  
Tracy A Larson ◽  
Emily Bain ◽  
Samantha Sturiale ◽  
...  

Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including zebrafish Danio rerio, we identified two populations of white pigment cells--leucophores--one of which arises by transdifferentiation of adult melanophores and another that develops from a yellow/orange xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical and ultrastructural analyses of zebrafish leucophores revealed cell-type specific chemical compositions, organelle configurations and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching and we show that leucophore complement influences behavior. Together, our studies revealed new, independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish, and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.

Author(s):  
Victor M. Lewis ◽  
Lauren M. Saunders ◽  
Tracy A. Larson ◽  
Emily J. Bain ◽  
Samantha L. Sturiale ◽  
...  

Understanding genetic and cellular bases of adult form remains a fundamental goal at the intersection of developmental and evolutionary biology. The skin pigment cells of vertebrates, derived from embryonic neural crest, are a useful system for elucidating mechanisms of fate specification, pattern formation, and how particular phenotypes impact organismal behavior and ecology. In a survey of Danio fishes, including the zebrafish Danio rerio, we identified two populations of white pigment cells—leucophores—one of which arises by transdifferentiation of adult melanophores and another of which develops from a yellow–orange xanthophore or xanthophore-like progenitor. Single-cell transcriptomic, mutational, chemical, and ultrastructural analyses of zebrafish leucophores revealed cell-type–specific chemical compositions, organelle configurations, and genetic requirements. At the organismal level, we identified distinct physiological responses of leucophores during environmental background matching, and we showed that leucophore complement influences behavior. Together, our studies reveal independently arisen pigment cell types and mechanisms of fate acquisition in zebrafish and illustrate how concerted analyses across hierarchical levels can provide insights into phenotypes and their evolution.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Lauren M Saunders ◽  
Abhishek K Mishra ◽  
Andrew J Aman ◽  
Victor M Lewis ◽  
Matthew B Toomey ◽  
...  

Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.


Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1085-1091 ◽  
Author(s):  
R.A. Cameron ◽  
S.E. Fraser ◽  
R.J. Britten ◽  
E.H. Davidson

This paper examines the cell lineage relationships and cell fates in embryos of the sea urchin Strongylocentrotus purpuratus leading to the various cell types derived from the definitive vegetal plate territory or the veg2 tier of cells. These cell types are gut, pigment cells, basal cells and coelomic pouches. They are cell types that constitute embryonic structures through cellular migration or rearrangement unlike the relatively non-motile ectoderm cell types. For this analysis, we use previous knowledge of lineage to assign macromeres to one of four types: VOM, the oral macromere; VAM, the aboral macromere, right and left VLM, the lateral macromeres. Each of the four macromeres contributes progeny to all of the cell types that descend from the definitive vegetal plate. Thus in the gut each macromere contributes to the esophagus, stomach and intestine, and the stripe of labeled cells descendant from a macromere reflects the re-arrangement of cells that occurs during archenteron elongation. Pigment cell contributions exhibit no consistent pattern among the four macromeres, and are haphazardly distributed throughout the ectoderm. Gut and pigment cell contributions are thus radially symmetrical. In contrast, the VOM blastomere contributes to both of the coelomic pouches while the other three macromeres contribute to only one or the other pouch. The total of the macromere contribution amounts to 60% of the cells constituting the coelomic pouches.


2019 ◽  
Author(s):  
Yuji Otsuki ◽  
Yuki Okuda ◽  
Kiyoshi Naruse ◽  
Hideyuki Saya

ABSTRACTThe body coloration of animals is due to pigment cells derived from neural crest cells, which are multipotent and differentiate into diverse cell types. Medaka (Oryzias latipes) possesses four distinct types of pigment cells known as melanophores, xanthophores, iridophores, and leucophores. Thefew melanophore(fm) mutant of medaka is characterized by reduced numbers of melanophores and leucophores. We here identifykit-ligand a(kitlga) as the gene whose mutation gives rise to thefmphenotype. This identification was confirmed by generation ofkitlgaknockout medaka and the findings that these fish also manifest reduced numbers of melanophores and leucophores and fail to rescue thefmmutant phenotype. We also found that expression ofsox5,pax7a,pax3a, andmitfagenes is down-regulated in bothfmandkitlgaknockout medaka, implicating c-Kit signaling in regulation of the expression of these genes as well as the encoded transcription factors in pigment cell specification. Our results may provide insight into the pathogenesis of c-Kit–related pigmentation disorders such as piebaldism in humans, and ourkitlgaknockout medaka may prove useful as a tool for drug screening.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Margherita Perillo ◽  
Nathalie Oulhen ◽  
Stephany Foster ◽  
Maxwell Spurrell ◽  
Cristina Calestani ◽  
...  

Cells bearing pigment have diverse roles and are often under strict evolutionary selection. Here, we explore the regulation of pigmented cells in the purple sea urchin Strongylocentrotus purpuratus, an emerging model for diverse pigment function. We took advantage of single cell RNA-seq (scRNAseq) technology and discovered that pigment cells in the embryo segregated into two distinct populations, a mitotic cluster and a post-mitotic cluster. Gcm is essential for expression of several genes important for pigment function, but is only transiently expressed in these cells. We discovered unique genes expressed by pigment cells and test their expression with double fluorescence in situ hybridization. These genes include new members of the fmo family that are expressed selectively in pigment cells of the embryonic and in the coelomic cells of the adult - both cell-types having immune functions. Overall, this study identifies nodes of molecular intersection ripe for change by selective evolutionary pressures.


Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 47-62
Author(s):  
D. J. Pritchard

Neural retina from 8- to 9-day embryo chickens was grown in long-term cell culture in an experiment to test the hpothesis that one step during the in vitro transdifferentiation of neural retina into pigment cells occurs in response to stimulation of tricarboxylic acid (TCA) cycle activity. Time-lapse photography showed that pigment-cell formation occurs through the intermediate stages of ‘undistinguished cells’, ‘pavement epithelium’ and ‘potential pigment cells’. Mitosis of undistinguished cells to pavement epithelium was proportional to malonate over most of the tested range of concentrations and was inhibited by succinate, which respectively depress and stimulate the TCA cycle. Conversely mitosis of pavement epithelium to potential pigment cells occurred in proportion to succinate concentration over most of the tested range and was inhibited by malonate, in support of the hypothesis under test. Melanin synthesis begins in a minority of ‘pigment leader cells’ uniquely stimulated by the lowest concentration of malonate, although higher concentrations blocked pigment synthesis in all cell types. The pigment leader cells appear to act as centres of influence upon neighbouring potential pigment cells, which subsequently also beome pigmented. Lactate inhibited most or all of the steps in formation of pigment epithelium. Between three and five mitoses occur in the production of pigment cells, whereas multilayers and lentoid bodies seem to be formed by expansion of undistinguished cells, probably without mitosis. The observations lead to a general theory that metaplastic conversion between cell types in eye tissues may require the physical isolation of overtly differentiated, multipotent cells from ‘leader’ cells which normally hold them in physiological subjugation.


2021 ◽  
Author(s):  
Masataka Nikaido ◽  
Tatiana Subkhankulova ◽  
Leonid A. Uroshlev ◽  
Artem J. Kasianov ◽  
Karen Camargo Sosa ◽  
...  

Neural crest cells (NCCs) are highly multipotent stem cells. A long-standing controversy exists over the mechanism of NCC fate specification, specifically regarding the presence and potency of intermediate progenitors. The direct fate restriction (DFR) model, based on early in vivo clonal studies, hypothesised that intermediates are absent and that migrating cells maintain full multipotency. However, most authors favour progressive fate restriction (PFR) models, with fully multipotent early NCCs (ENCCs) transitioning to partially-restricted intermediates before committing to individual fates. Here, single cell transcriptional profiling of zebrafish pigment cell development leads to us proposing a Cyclical Fate Restriction mechanism of NCC development that reconciles the DFR and PFR models. Our clustering of single NCC Nanostring transcriptional profiles identifies only broadly multipotent intermediate states between ENCCs and differentiated melanocytes and iridophores. Leukocyte tyrosine kinase (Ltk) marks the multipotent progenitor and iridophores, consistent with biphasic ltk expression. Ltk inhibitor and constitutive activation studies support expression at an early multipotent stage, whilst lineage-tracing of ltk-expressing cells reveals their multipotency extends beyond pigment cell-types to neural fates. We conclude that pigment cell development does not involve a conventional PFR mechanism, but instead occurs directly and more dynamically from a broadly multipotent intermediate state.


2021 ◽  
Author(s):  
Andrew J Aman ◽  
Lauren M Saunders ◽  
Sanjay R Srivatsan ◽  
Cole Trapnell ◽  
David M. Parichy

Regulation of neural crest derived pigment cells and dermal cells that form skin appendages is broadly similar across vertebrate taxa. In zebrafish, organized pigment stripes and an array of calcified scales form simultaneously in the skin during post-embryonic development. Understanding mechanisms that regulate stripe patterning and dermal morphogenesis may lead to discovery of fundamental mechanisms that govern development of animal form. To learn about cell types and potential signaling interactions that govern skin patterning and morphogenesis we generated and analyzed single cell transcriptomes of skin with genetic or induced defects in pigmentation and squamation. These data reveal a previously undescribed population of ameloblast-like epidermal cells, suggest hormonal control of epithelial-mesenchymal signaling, clarify the signaling network that governs scale papillae development, and identify the hypodermis as a crucial pigment cell support environment. These analyses provide new insights into the development of skin and pigmentation and highlight the utility of zebrafish for uncovering essential features of post-embryonic development in vertebrates.


Development ◽  
1984 ◽  
Vol 81 (1) ◽  
pp. 105-125
Author(s):  
S. K. Frost ◽  
L. G. Epp ◽  
S. J. Robinson

A biochemical and transmission electron microscopic description of the wild-type pigment phenotype in developing Mexican axolotls (Ambystoma mexicanum) is presented. There are three pigment cell types found in adult axolotl skin - melanophores, xanthophores and iridophores. Both pigments and pigment cells undergo specific developmental changes in axolotls. Melanophores are the predominant pigment cell type throughout development; xanthophores occur secondarily and in fewer numbers than melanophores; iridophores do not appear until well into the larval stage and remain thereafter as the least frequently encountered pigment cell type. Ultrastructural differences in xanthophore organelle (pterinosome) structure at different developmental stages correlate with changes in the pattern of pteridine biosynthesis. Sepiapterin, a yellow pteridine, is present in larval axolotl skin but not in adults. Ribofiavin (also yellow) is present in minimal quantities in larval skin and large quantities in adult axolotl skin. Pterinosomes undergo a morphological “reversion” at some point prior to or shortly after axolotls attain sexual maturity. Correlated with the neotenic state of the axolotl, certain larval pigmentary features are retained throughout development. Notably, the pigment cells remain scattered in the dermis such that no two pigment cell bodies overlap, although cell processes may overlap. This study forms the basis for comparison of the wild type pigment phenotype to the three mutant phenotypes-melanoid, axanthic and albino-found in the axolotl.


2019 ◽  
Vol 10 (1) ◽  
pp. 311-319 ◽  
Author(s):  
Yuji Otsuki ◽  
Yuki Okuda ◽  
Kiyoshi Naruse ◽  
Hideyuki Saya

The body coloration of animals is due to pigment cells derived from neural crest cells, which are multipotent and differentiate into diverse cell types. Medaka (Oryzias latipes) possesses four distinct types of pigment cells known as melanophores, xanthophores, iridophores, and leucophores. The few melanophore (fm) mutant of medaka is characterized by reduced numbers of melanophores and leucophores. We here identify kit-ligand a (kitlga) as the gene whose mutation gives rise to the fm phenotype. This identification was confirmed by generation of kitlga knockout medaka and the findings that these fish also manifest reduced numbers of melanophores and leucophores and fail to rescue the fm mutant phenotype. We also found that expression of sox5, pax7a, pax3a, and mitfa genes is down-regulated in both fm and kitlga knockout medaka, implicating c-Kit signaling in regulation of the expression of these genes as well as the encoded transcription factors in pigment cell specification. Our results may provide insight into the pathogenesis of c-Kit–related pigmentation disorders such as piebaldism in humans, and our kitlga knockout medaka may prove useful as a tool for drug screening.


Sign in / Sign up

Export Citation Format

Share Document