scholarly journals Macromere cell fates during sea urchin development

Development ◽  
1991 ◽  
Vol 113 (4) ◽  
pp. 1085-1091 ◽  
Author(s):  
R.A. Cameron ◽  
S.E. Fraser ◽  
R.J. Britten ◽  
E.H. Davidson

This paper examines the cell lineage relationships and cell fates in embryos of the sea urchin Strongylocentrotus purpuratus leading to the various cell types derived from the definitive vegetal plate territory or the veg2 tier of cells. These cell types are gut, pigment cells, basal cells and coelomic pouches. They are cell types that constitute embryonic structures through cellular migration or rearrangement unlike the relatively non-motile ectoderm cell types. For this analysis, we use previous knowledge of lineage to assign macromeres to one of four types: VOM, the oral macromere; VAM, the aboral macromere, right and left VLM, the lateral macromeres. Each of the four macromeres contributes progeny to all of the cell types that descend from the definitive vegetal plate. Thus in the gut each macromere contributes to the esophagus, stomach and intestine, and the stripe of labeled cells descendant from a macromere reflects the re-arrangement of cells that occurs during archenteron elongation. Pigment cell contributions exhibit no consistent pattern among the four macromeres, and are haphazardly distributed throughout the ectoderm. Gut and pigment cell contributions are thus radially symmetrical. In contrast, the VOM blastomere contributes to both of the coelomic pouches while the other three macromeres contribute to only one or the other pouch. The total of the macromere contribution amounts to 60% of the cells constituting the coelomic pouches.

Zygote ◽  
1999 ◽  
Vol 8 (S1) ◽  
pp. S42-S43 ◽  
Author(s):  
Tetsuya Kominami

Sea urchin pluteus larvae contain dozens of pigment cells in their ectoderm. These pigment cells are the descendants of the veg2 blastomeres of the 60-cell stage embryo. According to the fate map made by Ruffins and Ettensohn, the prospective pigment cells occupy the central region of the vegetal plate. Most of these prospective pigment cells exclusively give rise to pigment cells. Therefore, specification of the pigment cell lineage should occur at some point between the 60-cell and mesenchyme blastula stage. However, the detailed process of the specification of the pigment lineage is unknown.When are pigment cells specified? Are cell interactions necessary for the specification? Do founder cells exist? To answer these questions, I treated embryos with Ca2+-free seawater during the cleavage stage and examined the number of pigment cells observed in pluteus larvae. Treatment at 5.5–8.5 h and especially 7.5–10.5 h postfertilisation markedly reduced the number of pigment cells. The decrease was statistically significant. On the other hand, the treatment at 3.5–6.5 h or 9.5–12.5 h never reduced the number of pigment cells. By examining the frequency of the appearance of embryos whose numbers of pigment cells were less than 20, it was also found that the numbers of pigment cells were frequently in multiples of 4. Embryos having 4, 8, 12, 16 and 20 pigment cells were more frequently observed. Statistics indicated that the frequency of appearance was not random. These results indicated that cell contacts are necessary for the specification of pigment cells and that the specification occurs from 7 to 10 h postfertilisation. The results also suggest that the founder cells, if they exist, divide twice before they differentiate into pigment cells.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Lauren M Saunders ◽  
Abhishek K Mishra ◽  
Andrew J Aman ◽  
Victor M Lewis ◽  
Matthew B Toomey ◽  
...  

Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.


2019 ◽  
Vol 53 (1) ◽  
pp. 505-530 ◽  
Author(s):  
Larissa B. Patterson ◽  
David M. Parichy

Vertebrate pigment patterns are diverse and fascinating adult traits that allow animals to recognize conspecifics, attract mates, and avoid predators. Pigment patterns in fish are among the most amenable traits for studying the cellular basis of adult form, as the cells that produce diverse patterns are readily visible in the skin during development. The genetic basis of pigment pattern development has been most studied in the zebrafish, Danio rerio. Zebrafish adults have alternating dark and light horizontal stripes, resulting from the precise arrangement of three main classes of pigment cells: black melanophores, yellow xanthophores, and iridescent iridophores. The coordination of adult pigment cell lineage specification and differentiation with specific cellular interactions and morphogenetic behaviors is necessary for stripe development. Besides providing a nice example of pattern formation responsible for an adult trait of zebrafish, stripe-forming mechanisms also provide a conceptual framework for posing testable hypotheses about pattern diversification more broadly. Here, we summarize what is known about lineages and molecular interactions required for pattern formation in zebrafish, we review some of what is known about pattern diversification in Danio, and we speculate on how patterns in more distant teleosts may have evolved to produce a stunningly diverse array of patterns in nature.


2019 ◽  
Author(s):  
Jonathan E. Valencia ◽  
Roberto Feuda ◽  
Dan O. Mellott ◽  
Robert D. Burke ◽  
Isabelle S. Peter

ABSTRACTOne of the signatures of evolutionarily related cell types is the expression of similar combinations of transcription factors in distantly related animals. Here we present evidence that sea urchin larvae possess bilateral clusters of ciliary photoreceptors that are positioned in the oral/anterior apical neurogenic domain and associated with pigment cells. The expression of synaptotagmin indicates that the photoreceptors are neurons. Immunostaining shows that the sea urchin photoreceptors express an RGR/GO-opsin, opsin3.2, which co-localizes with tubulin on immotile cilia on the cell surface. Furthermore, orthologs of several transcription factors expressed in vertebrate photoreceptors are expressed in sea urchin ciliary photoreceptors, including Otx, Six3, Tbx2/3, and Rx, a transcription factor typically associated with ciliary photoreceptors. Analysis of gene expression during sea urchin development indicates that the photoreceptors derive from the anterior apical neurogenic domain. Thus, based on location, developmental origin, and transcription factor expression, sea urchin ciliary photoreceptors are likely homologous to vertebrate rods and cones. However, we found that genes typically involved in eye development in many animals, including pax6, six1/2, eya, and dac, are not expressed in sea urchin ciliary photoreceptors. Instead, all four genes are co-expressed in the hydropore canal, indicating that these genes operate as a module in an unrelated developmental context. Thus, based on current evidence, we conclude that at least within deuterostomes, ciliary photoreceptors share a common evolutionary origin and express a shared regulatory state that includes Rx, Otx, and Six3, but not transcription factors that are commonly associated with the retinal determination circuit.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244794 ◽  
Author(s):  
Kleio Petratou ◽  
Samantha A. Spencer ◽  
Robert N. Kelsh ◽  
James A. Lister

Understanding how fate specification of distinct cell-types from multipotent progenitors occurs is a fundamental question in embryology. Neural crest stem cells (NCSCs) generate extraordinarily diverse derivatives, including multiple neural, skeletogenic and pigment cell fates. Key transcription factors and extracellular signals specifying NCSC lineages remain to be identified, and we have only a little idea of how and when they function together to control fate. Zebrafish have three neural crest-derived pigment cell types, black melanocytes, light-reflecting iridophores and yellow xanthophores, which offer a powerful model for studying the molecular and cellular mechanisms of fate segregation. Mitfa has been identified as the master regulator of melanocyte fate. Here, we show that an Mitf-related transcription factor, Tfec, functions as master regulator of the iridophore fate. Surprisingly, our phenotypic analysis of tfec mutants demonstrates that Tfec also functions in the initial specification of all three pigment cell-types, although the melanocyte and xanthophore lineages recover later. We show that Mitfa represses tfec expression, revealing a likely mechanism contributing to the decision between melanocyte and iridophore fate. Our data are consistent with the long-standing proposal of a tripotent progenitor restricted to pigment cell fates. Moreover, we investigate activation, maintenance and function of tfec in multipotent NCSCs, demonstrating for the first time its role in the gene regulatory network forming and maintaining early neural crest cells. In summary, we build on our previous work to characterise the gene regulatory network governing iridophore development, establishing Tfec as the master regulator driving iridophore specification from multipotent progenitors, while shedding light on possible cellular mechanisms of progressive fate restriction.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 33-41 ◽  
Author(s):  
David R. McClay ◽  
Norris A. Armstrong ◽  
Jeff Hardin

The sea urchin embryo follows a relatively simple cell behavioral sequence in its gastrulation movements. To form the mesoderm, primary mesenchyme cells ingress from the vegetal plate and then migrate along the basal lamina lining the blastocoel. The presumptive secondary mesenchyme and endoderm then invaginate from the vegetal pole of the embryo. The archenteron elongates and extends across the blastocoel until the tip of the archenteron touches and attaches to the opposite side of the blastocoel. Secondary mesenchyme cells, originally at the tip of the archenteron, differentiate to form a variety of structures including coelomic pouches, esophageai muscles, pigment cells and other cell types. After migration of the secondary mesenchyme cells from their original position at the tip of the archenteron, the endoderm fuses with an invagination of the ventral ectoderm (the stomodaem), to form the mouth and complete the process of gastrulation. A larval skeleton is made by primary mesenchyme cells during the time of archenteron and mouth formation. A number of experiments have established that these morphogenetic movements involve a number of cell autonomous behaviors plus a series of cell interactions that provide spatial, temporal and scalar information to cells of the mesoderm and endoderm. The cell autonomous behaviors can be demonstrated by the ability of micromeres or endoderm to perform their morphogenetic functions if either is isolated and grown in culture. The requirement for cell interactions has been demonstrated by manipulative experiments where it has been shown that axial information, temporal information, spatial information and scalar information is obtained by mesoderm and endoderm from other embryonic cells. This information governs the cell autonomous behavior and places the cells in the correct embryonic context.


Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
C.A. Ettensohn ◽  
S.W. Ruffins

An interaction between the two principal populations of mesodermal cells in the sea urchin embryo, primary and secondary mesenchyme cells (PMCs and SMCs, respectively), regulates SMC fates and the process of skeletogenesis. In the undisturbed embryo, skeletal elements are produced exclusively by PMCs. Certain SMCs also have the ability to express a skeletogenic phenotype; however, signals transmitted by the PMCs direct these cells into alternative developmental pathways. In this study, a combination of fluorescent cell-labeling methods, embryo microsurgery and cell-specific molecular markers have been used to study the lineage, numbers, normal fate(s) and developmental potential of the skeletogenic SMCs. Previous fate-mapping studies have shown that SMCs are derived from the veg2 layer of blastomeres of the 64-cell-stage embryo and from the small micromeres. By specifically labeling the small micromeres with 5-bromodeoxyuridine, we demonstrate that descendants of these cells do not participate in skeletogenesis in PMC-depleted larvae, even though they are the closest lineal relatives of PMCs. Skeletogenic SMCs are therefore derived exclusively from the veg2 blastomeres. Because the SMCs are a heterogeneous population of cells, we have sought to gain information concerning the normal fate(s) of skeletogenic SMCs by determining whether specific cell types are reduced or absent in PMC(−) larvae. Of the four known SMC derivatives: pigment cells, blastocoelar (basal) cells, muscle cells and coelomic pouch cells, only pigment cells show a major reduction (> 50%) in number following SMC skeletogenesis. We therefore propose that the PMC-derived signal regulates a developmental switch, directing SMCs to adopt a pigment cell phenotype instead of a default (skeletogenic) fate. Ablation of SMCs at the late gastrula stage does not result in the recruitment of any additional skeletogenic cells, demonstrating that, by this stage, the number of SMCs with skeletogenic potential is restricted to 60–70 cells. Previous studies showed that during their switch to a skeletogenic fate, SMCs alter their migratory behavior and cell surface properties. In this study, we demonstrate that during conversion, SMCs become insensitive to the PMC-derived signal, while at the same time they acquire PMC-specific signaling properties.


Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3175-3185 ◽  
Author(s):  
M.Q. Martindale ◽  
J.Q. Henry

The nemerteans belong to a phylum of coelomate worms that display a highly conserved pattern of cell divisions referred to as spiral cleavage. It has recently been shown that the fates of the four embryonic cell quadrants in two species of nemerteans are not homologous to those in other spiralian embryos, such as the annelids and molluscs (Henry, J. Q. and Martindale, M. Q. (1994a) Develop. Genetics 15, 64–78). Equal-cleaving molluscs utilize inductive interactions to establish quadrant-specific cell fates and embryonic symmetry properties following fifth cleavage. In order to elucidate the manner in which cell fates are established in nemertean embryos, we have conducted cell isolation and deletion experiments to examine the developmental potential of the early cleavage blastomeres of two equal-cleaving nemerteans, Nemertopsis bivittata and Cerebratulus lacteus. These two species display different modes of development: N. bivittata develops directly via a non-feeding larvae, while C. lacteus develops to form a feeding pilidium larva which undergoes a radical metamorphosis to give rise to the juvenile worm. By examining the development of certain structures and cell types characteristic of quadrant-specific fates for each of these species, we have shown that isolated blastomeres of the indirect-developing nemertean, C. lacteus, are capable of generating cell fates that are not a consequence of that cell's normal developmental program. For instance, dorsal blastomeres can form muscle fibers when cultured in isolation. In contrast, isolated blastomeres of the direct-developing species, N. bivittata do not regulate their development to the same extent. Some cell fates are specified in a precocious manner in this species, such as those that give rise to the eyes. Thus, these findings indicate that equal-cleaving spiralian embryos can utilize different mechanisms of cell fate and axis specification. The implications of these patterns of nemertean development are discussed in relation to experimental work in other spiralian embryos, and a model is presented that accounts for possible evolutionary changes in cell lineage and the process of cell fate specification amongst these protostome phyla.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Natalya V. Ageenko ◽  
Konstantin V. Kiselev ◽  
Nelly A. Odintsova

One of the polyketide compounds, the naphthoquinone pigment echinochrome, is synthesized in sea urchin pigment cells. We analyzed polyketide synthase (pks) and sulfotransferase (sult) gene expression in embryos and larvae of the sea urchinStrongylocentrotus intermediusfrom various stages of development and in specific tissues of the adults. We observed the highest level of expression of thepksandsultgenes at the gastrula stage. In unfertilized eggs, only trace amounts of thepksandsulttranscripts were detected, whereas no transcripts of these genes were observed in spermatozoids. The addition of shikimic acid, a precursor of naphthoquinone pigments, to zygotes and embryos increased the expression of thepksandsultgenes. Our findings, including the development of specific conditions to promote pigment cell differentiation of embryonic sea urchin cells in culture, represent a definitive study on the molecular signaling pathways that are involved in the biosynthesis of pigments during sea urchin development.


2019 ◽  
Author(s):  
Yuji Otsuki ◽  
Yuki Okuda ◽  
Kiyoshi Naruse ◽  
Hideyuki Saya

ABSTRACTThe body coloration of animals is due to pigment cells derived from neural crest cells, which are multipotent and differentiate into diverse cell types. Medaka (Oryzias latipes) possesses four distinct types of pigment cells known as melanophores, xanthophores, iridophores, and leucophores. Thefew melanophore(fm) mutant of medaka is characterized by reduced numbers of melanophores and leucophores. We here identifykit-ligand a(kitlga) as the gene whose mutation gives rise to thefmphenotype. This identification was confirmed by generation ofkitlgaknockout medaka and the findings that these fish also manifest reduced numbers of melanophores and leucophores and fail to rescue thefmmutant phenotype. We also found that expression ofsox5,pax7a,pax3a, andmitfagenes is down-regulated in bothfmandkitlgaknockout medaka, implicating c-Kit signaling in regulation of the expression of these genes as well as the encoded transcription factors in pigment cell specification. Our results may provide insight into the pathogenesis of c-Kit–related pigmentation disorders such as piebaldism in humans, and ourkitlgaknockout medaka may prove useful as a tool for drug screening.


Sign in / Sign up

Export Citation Format

Share Document