scholarly journals Dietary restriction induces post-transcriptional regulation of longevity genes

2019 ◽  
Author(s):  
Jarod A. Rollins ◽  
Santina S. Snow ◽  
Pankaj Kapahi ◽  
Aric N. Rogers

AbstractDietary restriction increases lifespan through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of C. elegans subjected to dietary restriction. Transcription of muscle regulatory and structural genes increased, while increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of post-transcriptional regulation identified putative roles for RNA binding proteins, RNA editing, microRNA, alternative splicing, and nonsense mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate lifespan. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally downregulated genes. Furthermore, 3’ UTR editing and intron retention increase under dietary restriction and correlate with diminished translation, while trans-spliced genes are refractory to reduced translation efficiency compared to messages with the native 5’ UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense mediated decay targets, are required for increased lifespan under dietary restriction.

2019 ◽  
Vol 2 (4) ◽  
pp. e201800281 ◽  
Author(s):  
Jarod A Rollins ◽  
Dan Shaffer ◽  
Santina S Snow ◽  
Pankaj Kapahi ◽  
Aric N Rogers

Dietary restriction (DR) increases life span through adaptive changes in gene expression. To understand more about these changes, we analyzed the transcriptome and translatome of Caenorhabditis elegans subjected to DR. Transcription of muscle regulatory and structural genes increased, whereas increased expression of amino acid metabolism and neuropeptide signaling genes was controlled at the level of translation. Evaluation of posttranscriptional regulation identified putative roles for RNA-binding proteins, RNA editing, miRNA, alternative splicing, and nonsense-mediated decay in response to nutrient limitation. Using RNA interference, we discovered several differentially expressed genes that regulate life span. We also found a compensatory role for translational regulation, which offsets dampened expression of a large subset of transcriptionally down-regulated genes. Furthermore, 3′ UTR editing and intron retention increase under DR and correlate with diminished translation, whereas trans-spliced genes are refractory to reduced translation efficiency compared with messages with the native 5′ UTR. Finally, we find that smg-6 and smg-7, which are genes governing selection and turnover of nonsense-mediated decay targets, are required for increased life span under DR.


2020 ◽  
Vol 21 (23) ◽  
pp. 9319
Author(s):  
Toru Suzuki ◽  
Shungo Adachi ◽  
Chisato Kikuguchi ◽  
Shinsuke Shibata ◽  
Saori Nishijima ◽  
...  

Transcripts of alpha-fetoprotein (Afp), H19, and insulin-like growth factor 2 (Igf2) genes are highly expressed in mouse fetal liver, but decrease drastically during maturation. While transcriptional regulation of these genes has been well studied, the post-transcriptional regulation of their developmental decrease is poorly understood. Here, we show that shortening of poly(A) tails and subsequent RNA decay are largely responsible for the postnatal decrease of Afp, H19, and Igf2 transcripts in mouse liver. IGF2 mRNA binding protein 1 (IMP1), which regulates stability and translation efficiency of target mRNAs, binds to these fetal liver transcripts. When IMP1 is exogenously expressed in mouse adult liver, fetal liver transcripts show higher expression and possess longer poly(A) tails, suggesting that IMP1 stabilizes them. IMP1 declines concomitantly with fetal liver transcripts as liver matures. Instead, RNA-binding proteins (RBPs) that promote RNA decay, such as cold shock domain containing protein E1 (CSDE1), K-homology domain splicing regulatory protein (KSRP), and CUG-BP1 and ETR3-like factors 1 (CELF1), bind to 3′ regions of fetal liver transcripts. These data suggest that transitions among RBPs associated with fetal liver transcripts shift regulation from stabilization to decay, leading to a postnatal decrease in those fetal transcripts.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 662 ◽  
Author(s):  
Marie Christou-Kent ◽  
Magali Dhellemmes ◽  
Emeline Lambert ◽  
Pierre F. Ray ◽  
Christophe Arnoult

The oocyte faces a particular challenge in terms of gene regulation. When oocytes resume meiosis at the end of the growth phase and prior to ovulation, the condensed chromatin state prevents the transcription of genes as they are required. Transcription is effectively silenced from the late germinal vesicle (GV) stage until embryonic genome activation (EGA) following fertilisation. Therefore, during its growth, the oocyte must produce the mRNA transcripts needed to fulfil its protein requirements during the active period of meiotic completion, fertilisation, and the maternal-to zygote-transition (MZT). After meiotic resumption, gene expression control can be said to be transferred from the nucleus to the cytoplasm, from transcriptional regulation to translational regulation. Maternal RNA-binding proteins (RBPs) are the mediators of translational regulation and their role in oocyte maturation and early embryo development is vital. Understanding these mechanisms will provide invaluable insight into the oocyte’s requirements for developmental competence, with important implications for the diagnosis and treatment of certain types of infertility. Here, we give an overview of post-transcriptional regulation in the oocyte, emphasising the current knowledge of mammalian RBP mechanisms, and develop the roles of these mechanisms in the timely activation and elimination of maternal transcripts.


2019 ◽  
Vol 97 (1) ◽  
pp. 10-20 ◽  
Author(s):  
Laura P.M.H. de Rooij ◽  
Derek C.H. Chan ◽  
Ava Keyvani Chahi ◽  
Kristin J. Hope

Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP–RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.


2021 ◽  
Vol 22 (21) ◽  
pp. 11963
Author(s):  
Noof Aloufi ◽  
Aeshah Alluli ◽  
David H. Eidelman ◽  
Carolyn J. Baglole

Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.


Author(s):  
Marialaura Amadio ◽  
Giovanni Scapagnini ◽  
Sergio Davinelli ◽  
Vittorio Calabrese ◽  
Stefano Govoni ◽  
...  

2015 ◽  
Vol 6 ◽  
Author(s):  
Elke Van Assche ◽  
Sandra Van Puyvelde ◽  
Jos Vanderleyden ◽  
Hans P. Steenackers

2021 ◽  
Vol 12 ◽  
Author(s):  
Huiyuan Wang ◽  
Sheng Liu ◽  
Xiufang Dai ◽  
Yongkang Yang ◽  
Yunjun Luo ◽  
...  

Populus trichocarpa (P. trichocarpa) is a model tree for the investigation of wood formation. In recent years, researchers have generated a large number of high-throughput sequencing data in P. trichocarpa. However, no comprehensive database that provides multi-omics associations for the investigation of secondary growth in response to diverse stresses has been reported. Therefore, we developed a public repository that presents comprehensive measurements of gene expression and post-transcriptional regulation by integrating 144 RNA-Seq, 33 ChIP-seq, and six single-molecule real-time (SMRT) isoform sequencing (Iso-seq) libraries prepared from tissues subjected to different stresses. All the samples from different studies were analyzed to obtain gene expression, co-expression network, and differentially expressed genes (DEG) using unified parameters, which allowed comparison of results from different studies and treatments. In addition to gene expression, we also identified and deposited pre-processed data about alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI). The post-transcriptional regulation, differential expression, and co-expression network datasets were integrated into a new P. trichocarpa Stem Differentiating Xylem (PSDX) database, which further highlights gene families of RNA-binding proteins and stress-related genes. The PSDX also provides tools for data query, visualization, a genome browser, and the BLAST option for sequence-based query. Much of the data is also available for bulk download. The availability of PSDX contributes to the research related to the secondary growth in response to stresses in P. trichocarpa, which will provide new insights that can be useful for the improvement of stress tolerance in woody plants.


Sign in / Sign up

Export Citation Format

Share Document