scholarly journals Two ecotype-related long non-coding RNAs in the environmental control of root growth

2019 ◽  
Author(s):  
Thomas Blein ◽  
Coline Balzergue ◽  
Thomas Roulé ◽  
Marc Gabriel ◽  
Laetitia Scalisi ◽  
...  

AbstractBackgroundRoot architecture varies widely between species and even between ecotypes of the same species despite the strong conservation of the protein-coding portion of their genomes. In contrast, non-coding RNAs evolved rapidly between ecotypes and may control their differential responses to the environment as several long non-coding RNAs (lncRNAs) can quantitatively regulate gene expression.ResultsRoots from Columbia (Col) and Landsbergerecta(Ler) ecotypes respond differently to phosphate starvation. We compared complete transcriptomes (mRNAs, lncRNAs and small RNAs) of root tips from these two ecotypes during early phosphate starvation. We identified thousands of new lncRNAs categorized as intergenic or antisense RNAs that were largely conserved at DNA level in these ecotypes. In contrast to coding genes, many lncRNAs were specifically transcribed in one ecotype and/or differentially expressed between ecotypes independently of the phosphate condition. These ecotype-related lncRNAs were characterized by analyzing their sequence variability among plants and their link with siRNAs. Our analysis identified 675 lncRNAs differentially expressed between the two ecotypes including specific antisense RNAs targeting key regulators of root growth responses. Mis-regulation of several intergenic lncRNAs showed that at least two ecotype-related lncRNAs regulate primary root growth in Col.ConclusionsThe in depth exploration of the non-coding transcriptome of two ecotypes identified thousands of new lncRNAs showing specific expression in root apexes. De-regulation of two ecotype-related lncRNAs revealed a new pathway involved in the regulation of primary root growth. The non-coding genome may reveal novel mechanisms involved in ecotype adaptation of roots to different soil environments.

2019 ◽  
Vol 70 (18) ◽  
pp. 4763-4774 ◽  
Author(s):  
Christina Delay ◽  
Kelly Chapman ◽  
Michael Taleski ◽  
Yaowei Wang ◽  
Sonika Tyagi ◽  
...  

AbstractCEPs (C-TERMINALLY ENCODED PEPTIDEs) inhibit Arabidopsis primary root growth by unknown mechanisms. We investigated how CEP3 levels control primary root growth. CEP3 peptide application decreased cell division, S-phase cell number, root meristematic cell number, and meristem zone (MZ) size in a dose- and CEP RECEPTOR1-dependent manner. Grafting showed that CEP3-dependent growth inhibition requires root and shoot CEPR1. CEP3 induced mitotic quiescence in MZ cells significantly faster than that induced by nutrient limitation alone. CEP3 also inhibited the restoration of S-phase to mitotically quiescence cells by nutrient resupply without quantitatively reducing TARGET OF RAPAMYCIN (TOR) kinase activity. In contrast, cep3-1 had an increased meristem size and S-phase cell number under nitrogen (N)-limited conditions, but not under N-sufficient conditions. Furthermore, cep3-1 meristematic cells remained in S-phase longer than wild-type cells during a sustained carbon (C) and N limitation. RNA sequencing showed that CEP3 peptide down-regulated genes involved in S-phase entry, cell wall and ribosome biogenesis, DNA replication, and meristem expansion, and up-regulated genes involved in catabolic processes and proteins and peptides that negatively control meristem expansion and root growth. Many of these genes were reciprocally regulated in cep3-1. The results suggest that raising CEP3 induces starvation-related responses that curtail primary root growth under severe nutrient limitation.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1722
Author(s):  
Lidiya Vysotskaya ◽  
Guzel Akhiyarova ◽  
Arina Feoktistova ◽  
Zarina Akhtyamova ◽  
Alla Korobova ◽  
...  

Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA’s ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.


2018 ◽  
Vol 178 (1) ◽  
pp. 390-401 ◽  
Author(s):  
Jing Wang ◽  
Jawon Song ◽  
Greg Clark ◽  
Stanley J. Roux

2013 ◽  
Vol 4 ◽  
Author(s):  
Zhe Zhang ◽  
Priyamvada Voothuluru ◽  
Mineo Yamaguchi ◽  
Robert E. Sharp ◽  
Scott C. Peck

PLoS Genetics ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. e1006607 ◽  
Author(s):  
Christoph Weiste ◽  
Lorenzo Pedrotti ◽  
Jebasingh Selvanayagam ◽  
Prathibha Muralidhara ◽  
Christian Fröschel ◽  
...  

2004 ◽  
Vol 61 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Carlos Eduardo de Oliveira Camargo ◽  
Antonio Wilson Penteado Ferreira Filho ◽  
Marcus Vinicius Salomon

Primary root growth is very important for wheat (Triticum aestivum L.) crop in upland conditions in the State of São Paulo. Fourteen wheat genotypes (mutant lines and cultivars) were evaluated for primary root growth during 7 and 15 days of development in complete and aerated nutrient solutions, in the laboratory. In the first experiment, solutions with three pH values (4.0, 5.0 and 6.0) at constant temperature (24 ± 1°C), and in the second experiment, solutions with the same pH (4.0) but with three temperatures (18°C ± 1°C, 24°C ± 1°C and 30°C ± 1°C) were used. High genetic variability was observed among the evaluated genotypes in relation to primary root growth in the first stages of development in nutrient solutions independent of pH, temperature and growth period. Genotypes 6 (BH-1146) and 13 (IAC-17), tolerant to Al3+ showed genetic potential for root growth in the first stages of development (7 and 15 days), regardless of nutrient solution temperature and pH. Genotypes 14 (IAC-24 M), 15 (IAC-24), 17 (MON"S" / ALD "S") ´ IAC-24 M2, 18 (MON"S" / ALD "S") ´ IAC-24 M3 and 24 (KAUZ"S" / IAC-24 M3), tolerant to Al3+, showed reduced root growth under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document