scholarly journals CEP3 levels affect starvation-related growth responses of the primary root

2019 ◽  
Vol 70 (18) ◽  
pp. 4763-4774 ◽  
Author(s):  
Christina Delay ◽  
Kelly Chapman ◽  
Michael Taleski ◽  
Yaowei Wang ◽  
Sonika Tyagi ◽  
...  

AbstractCEPs (C-TERMINALLY ENCODED PEPTIDEs) inhibit Arabidopsis primary root growth by unknown mechanisms. We investigated how CEP3 levels control primary root growth. CEP3 peptide application decreased cell division, S-phase cell number, root meristematic cell number, and meristem zone (MZ) size in a dose- and CEP RECEPTOR1-dependent manner. Grafting showed that CEP3-dependent growth inhibition requires root and shoot CEPR1. CEP3 induced mitotic quiescence in MZ cells significantly faster than that induced by nutrient limitation alone. CEP3 also inhibited the restoration of S-phase to mitotically quiescence cells by nutrient resupply without quantitatively reducing TARGET OF RAPAMYCIN (TOR) kinase activity. In contrast, cep3-1 had an increased meristem size and S-phase cell number under nitrogen (N)-limited conditions, but not under N-sufficient conditions. Furthermore, cep3-1 meristematic cells remained in S-phase longer than wild-type cells during a sustained carbon (C) and N limitation. RNA sequencing showed that CEP3 peptide down-regulated genes involved in S-phase entry, cell wall and ribosome biogenesis, DNA replication, and meristem expansion, and up-regulated genes involved in catabolic processes and proteins and peptides that negatively control meristem expansion and root growth. Many of these genes were reciprocally regulated in cep3-1. The results suggest that raising CEP3 induces starvation-related responses that curtail primary root growth under severe nutrient limitation.

2020 ◽  
Author(s):  
Luciano M. Di Fino ◽  
Ignacio Cerrudo ◽  
Sonia R. Salvatore ◽  
Francisco J. Schopfer ◽  
Carlos García-Mata ◽  
...  

ABSTRACTNitric oxide (NO) is a second messenger that regulates a broad range of physiological processes in plants. NO-derived molecules called reactive nitrogen species (RNS) can react with unsaturated fatty acids generating nitrated fatty acids (NO2-FA). NO2-FA work as signaling molecules in mammals where production and targets have been described under different stress conditions. Recently, NO2-FAs were detected in plants, however their role(s) on plant physiological processes is still poorly known. Here we show that exogenous application of nitro-oleic acid (NO2-OA) inhibits Arabidopsis primary root growth; this inhibition is not likely due to nitric oxide (NO) production or impaired auxin or cytokinin root responses. Deep analyses showed that roots incubated with NO2-OA had a lower cell number in the division area. Although this NO2-FA did not affect the signaling mechanisms maintaining the stem cell niche, plants incubated with NO2-OA showed a reduction of cell division in the meristematic area. Therefore, this work shows that NO2-OA inhibits mitotic processes subsequently reducing primary root growth.


2019 ◽  
Author(s):  
Thomas Blein ◽  
Coline Balzergue ◽  
Thomas Roulé ◽  
Marc Gabriel ◽  
Laetitia Scalisi ◽  
...  

AbstractBackgroundRoot architecture varies widely between species and even between ecotypes of the same species despite the strong conservation of the protein-coding portion of their genomes. In contrast, non-coding RNAs evolved rapidly between ecotypes and may control their differential responses to the environment as several long non-coding RNAs (lncRNAs) can quantitatively regulate gene expression.ResultsRoots from Columbia (Col) and Landsbergerecta(Ler) ecotypes respond differently to phosphate starvation. We compared complete transcriptomes (mRNAs, lncRNAs and small RNAs) of root tips from these two ecotypes during early phosphate starvation. We identified thousands of new lncRNAs categorized as intergenic or antisense RNAs that were largely conserved at DNA level in these ecotypes. In contrast to coding genes, many lncRNAs were specifically transcribed in one ecotype and/or differentially expressed between ecotypes independently of the phosphate condition. These ecotype-related lncRNAs were characterized by analyzing their sequence variability among plants and their link with siRNAs. Our analysis identified 675 lncRNAs differentially expressed between the two ecotypes including specific antisense RNAs targeting key regulators of root growth responses. Mis-regulation of several intergenic lncRNAs showed that at least two ecotype-related lncRNAs regulate primary root growth in Col.ConclusionsThe in depth exploration of the non-coding transcriptome of two ecotypes identified thousands of new lncRNAs showing specific expression in root apexes. De-regulation of two ecotype-related lncRNAs revealed a new pathway involved in the regulation of primary root growth. The non-coding genome may reveal novel mechanisms involved in ecotype adaptation of roots to different soil environments.


2013 ◽  
Vol 4 ◽  
Author(s):  
Zhe Zhang ◽  
Priyamvada Voothuluru ◽  
Mineo Yamaguchi ◽  
Robert E. Sharp ◽  
Scott C. Peck

PLoS Genetics ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. e1006607 ◽  
Author(s):  
Christoph Weiste ◽  
Lorenzo Pedrotti ◽  
Jebasingh Selvanayagam ◽  
Prathibha Muralidhara ◽  
Christian Fröschel ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wai Kuan Yong ◽  
Sri Nurestri Abd Malek

We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.


2004 ◽  
Vol 61 (3) ◽  
pp. 313-318 ◽  
Author(s):  
Carlos Eduardo de Oliveira Camargo ◽  
Antonio Wilson Penteado Ferreira Filho ◽  
Marcus Vinicius Salomon

Primary root growth is very important for wheat (Triticum aestivum L.) crop in upland conditions in the State of São Paulo. Fourteen wheat genotypes (mutant lines and cultivars) were evaluated for primary root growth during 7 and 15 days of development in complete and aerated nutrient solutions, in the laboratory. In the first experiment, solutions with three pH values (4.0, 5.0 and 6.0) at constant temperature (24 ± 1°C), and in the second experiment, solutions with the same pH (4.0) but with three temperatures (18°C ± 1°C, 24°C ± 1°C and 30°C ± 1°C) were used. High genetic variability was observed among the evaluated genotypes in relation to primary root growth in the first stages of development in nutrient solutions independent of pH, temperature and growth period. Genotypes 6 (BH-1146) and 13 (IAC-17), tolerant to Al3+ showed genetic potential for root growth in the first stages of development (7 and 15 days), regardless of nutrient solution temperature and pH. Genotypes 14 (IAC-24 M), 15 (IAC-24), 17 (MON"S" / ALD "S") ´ IAC-24 M2, 18 (MON"S" / ALD "S") ´ IAC-24 M3 and 24 (KAUZ"S" / IAC-24 M3), tolerant to Al3+, showed reduced root growth under the same conditions.


Sign in / Sign up

Export Citation Format

Share Document