scholarly journals Time-resolved NMR monitoring of tRNA maturation

2019 ◽  
Author(s):  
Pierre Barraud ◽  
Alexandre Gato ◽  
Matthias Heiss ◽  
Marjorie Catala ◽  
Stefanie Kellner ◽  
...  

ABSTRACTAlthough the biological importance of post-transcriptional RNA modifications in gene expression is widely appreciated, methods to directly detect the introduction of these modifications during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. Here we introduce the application of NMR spectroscopy to observe the maturation of tRNAs in cell extracts. By following the maturation of yeast tRNAPhewith time-resolved NMR measurements, we found that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. In particular, we uncovered a strong hierarchy in the introduction of the T54, Ψ55 and m1A58 modifications in the T-arm, and demonstrate that the modification circuits identified in yeast extract with NMR also impact the tRNA modification process in living cells. The NMR-based methodology presented here could be adapted to investigate different aspects of tRNA maturation and RNA modifications in general.

ACS Sensors ◽  
2020 ◽  
Author(s):  
Ke-Jia Wu ◽  
Chun Wu ◽  
Feng Chen ◽  
Sha-Sha Cheng ◽  
Dik-Lung Ma ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiaoxiang Hu ◽  
Xiaolei Liu ◽  
Chen Li ◽  
Yulu Zhang ◽  
Chengyao Li ◽  
...  

Abstract Background Parasites of the genus Trichinella are the pathogenic agents of trichinellosis, which is a widespread and severe foodborne parasitic disease. Trichinella spiralis resides primarily in mammalian skeletal muscle cells. After invading the cells of the host organism, T. spiralis must elude or invalidate the host’s innate and adaptive immune responses to survive. It is necessary to characterize the pathogenesis of trichinellosis to help to prevent the occurrence and further progression of this disease. The aims of this study were to elucidate the mechanisms of nurse cell formation, pathogenesis and immune evasion of T. spiralis, to provide valuable information for further research investigating the basic cell biology of Trichinella-infected muscle cells and the interaction between T. spiralis and its host. Methods We performed transcriptome profiling by RNA sequencing to identify global changes at 1, 3, 7, 10 and 15 days post-infection (dpi) in gene expression in the diaphragm after the parasite entered and persisted within the murine myocytes; the mice were infected by intravenous injection of newborn larvae. Gene expression analysis was based on the alignment results. Differentially expressed genes (DEGs) were identified based on their expression levels in various samples, and functional annotation and enrichment analysis were performed. Results The most extensive and dynamic gene expression responses in host diaphragms were observed during early infection (1 dpi). The number of DEGs and genes annotated in the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases decreased significantly in the infected mice compared to the uninfected mice at 3 and 7 dpi, suddenly increased sharply at 10 dpi, and then decreased to a lower level at 15 dpi, similar to that observed at 3 and 7 dpi. The massive initial reaction of the murine muscle cells to Trichinella infection steadied in the later stages of infection, with little additional changes detected for the remaining duration of the studied process. Although there were hundreds of DEGs at each time point, only 11 genes were consistently up- or downregulated at all 5 time points. Conclusions The gene expression patterns identified in this study can be employed to characterize the coordinated response of T. spiralis-infected myocytes in a time-resolved manner. This comprehensive dataset presents a distinct and sensitive picture of the interaction between host and parasite during intracellular infection, which can help to elucidate how pathogens evade host defenses and coordinate the biological functions of host cells to survive in the mammalian environment.


1996 ◽  
Vol 270 (5) ◽  
pp. R1078-R1084 ◽  
Author(s):  
J. P. Smith ◽  
A. Shih ◽  
Y. Wu ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptides gastrin and cholecystokinin (CCK) stimulate growth of human pancreatic cancer through a CCK-B/gastrin- like receptor. In the present study we evaluated whether growth of human pancreatic cancer is endogenously regulated by gastrin. Immunohistomical examination of BxPC-3 cells and tumor xenografts revealed specifc gastrin immunoreactivity. Gastrin was detected by radioimmunoassay in pancreatic cancer cell extracts and in pancreatic cancer cell extracts and in the growth media. With use of reverse-transcriptase polymerase chain reaction gastrin gene expression was detected in both cultured BxPC-3 cancer cells and transplanted tumors, as well as seven addition human pancreatic cancer cell lines. Growth of BxPC-3 human pancreatic cancer cell in serum-free medium was inhibited by the addition of the CCK-B/gastrin receptor antagonist L-365,260, and gastrin treatment reversed the inhibitory effect of the antagonist. A selective gastrin antibody (Ab repressed growth of BxPC-3 cells. Gastrin immunoreactivity was detected in fresh human pancreatic cancer specimens but not in normal human pancreatic tissue. These data provide the first evidence that growth of a human pancreatic cancer is tonically stimulated by the autocrine production of gastrin. Evidence for the ubiquity of this system was provided by the detection of gastrin gene expression in multiple human pancreatic cancer cell lines and detection of gastrin in cell lines and fresh pancreatic tumors.


2017 ◽  
Vol 8 (7) ◽  
pp. 4973-4977 ◽  
Author(s):  
Kai Zhang ◽  
Xue-Jiao Yang ◽  
Wei Zhao ◽  
Ming-Chen Xu ◽  
Jing-Juan Xu ◽  
...  

A versatile strategy is reported which permits gene regulation and imaging in living cells via an RNA interference antagonistic probe.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Gwang Sik Kim ◽  
Young Chul Lee

Med6 protein (Med6p) is a hallmark component of evolutionarily conserved Mediator complexes, and the genuine role of Med6p in Mediator functions remains elusive. For the functional analysis ofSaccharomyces cerevisiaeMed6p (scMed6p), we generated a series of scMed6p mutants harboring a small internal deletion. Genetic analysis of these mutants revealed that three regions (amino acids 33–42 (Δ2), 125–134 (Δ5), and 157–166 (Δ6)) of scMed6p are required for cell viability and are located at highly conserved regions of Med6 homologs. Notably, the Med6p-Δ2 mutant was barely detectable in whole-cell extracts and purified Mediator, suggesting a loss of Mediator association and concurrent rapid degradation. Consistent with this, the recombinant forms of Med6p having these mutations partially (Δ2) restore or fail (Δ5 and Δ6) to restore in vitro transcriptional defects caused by temperature-sensitivemed6mutation. In an artificial recruitment assay, Mediator containing a LexA-fused wild-type Med6p or Med6p-Δ5 was recruited to thelexAoperator region with TBP and activated reporter gene expression. However, the recruitment of Mediator containing LexA-Med6p-Δ6 tolexAoperator region resulted in neither TBP recruitment nor reporter gene expression. This result demonstrates a pivotal role of Med6p in the postrecruitment function of Mediator, which is essential for transcriptional activation by Mediator.


2013 ◽  
Vol 405 (26) ◽  
pp. 8525-8537 ◽  
Author(s):  
Kristina Sagolla ◽  
Hans-Gerd Löhmannsröben ◽  
Carsten Hille

Sign in / Sign up

Export Citation Format

Share Document