scholarly journals Minimisation of surface energy drives apical epithelial organisation and gives rise to Lewis’ law

2019 ◽  
Author(s):  
Marco Kokic ◽  
Antonella Iannini ◽  
Gema Villa-Fombuena ◽  
Fernando Casares ◽  
Dagmar Iber

ABSTRACTThe packing of cells in epithelia exhibits striking regularities, regardless of the organism and organ. One of these regularities is expressed in Lewis’ law, which states that the average apical cell area is linearly related to the number of neighbours, such that cells with larger apical area have on average more neighbours. The driving forces behind the almost 100-year old Lewis’ law have remained elusive. We now provide evidence that the observed apical epithelial packing minimizes surface energy at the intercellular apical adhesion belt. Lewis’ law emerges because the apical cell surfaces then assume the most regular polygonal shapes within a contiguous lattice, thus minimising the average perimeter per cell, and thereby surface energy. We predict that the linear Lewis’ law generalizes to a quadratic law if the variability in apical areas is increased beyond what is normally found in epithelia. We confirm this prediction experimentally by generating heterogeneity in cell growth in Drosophila epithelia. Our discovery provides a link between epithelial organisation, cell division and growth and has implications for the general understanding of epithelial dynamics.

2019 ◽  
Author(s):  
Roman Vetter ◽  
Marco Kokic ◽  
Harold Gómez ◽  
Leonie Hodel ◽  
Bruno Gjeta ◽  
...  

ABSTRACTIt has long been noted that the cell arrangements in epithelia, regardless of their origin, exhibit some striking regularities: first, the average number of cell neighbours at the apical side is (close to) six. Second, the average apical cell area is linearly related to the number of neighbours, such that cells with larger apical area have on average more neighbours, a relation termed Lewis’ law. Third, Aboav-Weaire’s (AW) law relates the number of neighbours that a cell has to that of its direct neighbours. While the first rule can be explained with topological constraints in contiguous polygonal lattices, and the second rule (Lewis’ law) with the minimisation of the lateral contact surface energy, the driving forces behind the AW law have remained elusive. We now show that also the AW law emerges to minimise the lateral contact surface energy in polygonal lattices by driving cells to the most regular polygonal shape, but while Lewis’ law regulates the side lengths, the AW law controls the angles. We conclude that global apical epithelial organization is the result of energy minimisation under topological constraints.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Karin Schubert ◽  
Boris Sieger ◽  
Fabian Meyer ◽  
Giacomo Giacomelli ◽  
Kati Böhm ◽  
...  

ABSTRACT Members of the genus Mycobacterium are the most prevalent cause of infectious diseases. Mycobacteria have a complex cell envelope containing a peptidoglycan layer and an additional arabinogalactan polymer to which a mycolic acid bilayer is linked; this complex, multilayered cell wall composition (mAGP) is conserved among all CMN group bacteria. The arabinogalactan and mycolic acid synthesis pathways constitute effective drug targets for tuberculosis treatment. Ethambutol (EMB), a classical antituberculosis drug, inhibits the synthesis of the arabinose polymer. Although EMB acts bacteriostatically, its underlying molecular mechanism remains unclear. Here, we used Corynebacterium glutamicum and Mycobacterium phlei as model organisms to study the effects of EMB at the single-cell level. Our results demonstrate that EMB specifically blocks apical cell wall synthesis, but not cell division, explaining the bacteriostatic effect of EMB. Furthermore, the data suggest that members of the family Corynebacterineae have two dedicated machineries for cell elongation (elongasome) and cytokinesis (divisome). IMPORTANCE Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium. We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation. IMPORTANCE Antibiotic treatment of bacterial pathogens has contributed enormously to the increase in human health. Despite the apparent importance of antibiotic treatment of bacterial infections, surprisingly little is known about the molecular functions of antibiotic actions in the bacterial cell. Here, we analyzed the molecular effects of ethambutol, a first-line antibiotic against infections caused by members of the genus Mycobacterium. We find that this drug selectively blocks apical cell growth but still allows for effective cytokinesis. As a consequence, cells survive ethambutol treatment and adopt a pneumococcal cell growth mode with cell wall synthesis only at the site of cell division. However, combined treatment of ethambutol and beta-lactam antibiotics acts synergistically and effectively stops cell proliferation.


1961 ◽  
Vol 23 (2) ◽  
pp. 354-360 ◽  
Author(s):  
I.L. Cameron ◽  
D.M. Prescott
Keyword(s):  

2018 ◽  
Author(s):  
Evgeny Zatulovskiy ◽  
Daniel F. Berenson ◽  
Benjamin R. Topacio ◽  
Jan M. Skotheim

Cell size is fundamental to function in different cell types across the human body because it sets the scale of organelle structures, biosynthesis, and surface transport1,2. Tiny erythrocytes squeeze through capillaries to transport oxygen, while the million-fold larger oocyte divides without growth to form the ~100 cell pre-implantation embryo. Despite the vast size range across cell types, cells of a given type are typically uniform in size likely because cells are able to accurately couple cell growth to division3–6. While some genes whose disruption in mammalian cells affects cell size have been identified, the molecular mechanisms through which cell growth drives cell division have remained elusive7–12. Here, we show that cell growth acts to dilute the cell cycle inhibitor Rb to drive cell cycle progression from G1 to S phase in human cells. In contrast, other G1/S regulators remained at nearly constant concentration. Rb is a stable protein that is synthesized during S and G2 phases in an amount that is independent of cell size. Equal partitioning to daughter cells of chromatin bound Rb then ensures that all cells at birth inherit a similar amount of Rb protein. RB overexpression increased cell size in tissue culture and a mouse cancer model, while RB deletion decreased cell size and removed the inverse correlation between cell size at birth and the duration of G1 phase. Thus, Rb-dilution by cell growth in G1 provides a long-sought cell autonomous molecular mechanism for cell size homeostasis.


2010 ◽  
Vol 46 (6) ◽  
pp. 578-586 ◽  
Author(s):  
Ricardo Sotelo ◽  
Verónica Garrocho-Villegas ◽  
Raúl Aguilar ◽  
Ma. Elena Calderón ◽  
Estela Sánchez de Jiménez

Sign in / Sign up

Export Citation Format

Share Document