scholarly journals Diverse phenotypic responses and phosphate content in foxtail millet genotypes under greenhouse and field conditions

2019 ◽  
Author(s):  
S. Antony Ceasar ◽  
M. Ramakrishnan ◽  
K. K. Vinod ◽  
G. Victor Roch ◽  
Hari D. Upadhyaya ◽  
...  

AbstractPhosphorous (P) is an important macronutrient for the growth of all agricultural crops. This study reports phenotype analysis for P responses in field (two different seasons, monsoon and summer) and greenhouse, using 54 genotypes of foxtail millet (Setaria italica) under P-fertilized (P+) and unfertilized (P-) conditions. Variation was seen for plant height, leaf number and length, tillering ability and seed yield traits. Genotypes ISe 1234 and ISe 1541 were P+ responders, and the genotypes ISe 1181, ISe 1655, ISe 783 and ISe 1892 tend more towards low P tolerance for total seed yield. Genotypes that performed well under P-conditions were almost as productive as genotypes that performed well under P+ conditions suggesting some genotypes are well adapted to nutrient-poor soils. In the greenhouse, significant variation was seen for root hair density and root hair number and for fresh and dry weights of shoot and root under P-stress. However, there was not much difference in the shoot and root total P and inorganic phosphate (Pi) levels of five selected high and low responding genotypes. In the root and leaf tissues, total P and Pi contents of five high responding genotypes were higher than the five low responding genotypes.HighlightEnormous phenotypic and phosphate content variation of foxtail millet under low-phosphate supply in greenhouse and natural field conditions identifies genotypic plasticity for future breeding for improved P use efficiency.

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1591
Author(s):  
Patrícia Carvalho da Silva ◽  
Walter Quadros Ribeiro Junior ◽  
Maria Lucrecia Gerosa Ramos ◽  
Sonia Maria Costa Celestino ◽  
Alberto do Nascimento Silva ◽  
...  

Quinoa stands out as an excellent crop in the Cerrado region for cultivation in the off-season or irrigated winter season. Here, we tested the effects of different water regimes on the agronomic characteristics, physiology, and grain quality of different elite quinoa genotypes under field conditions. The experiment was conducted under field conditions at Embrapa Cerrados (Planaltina, DF, Brazil). The experimental design was in randomized blocks, in a split-plot scheme, with four replications. The plots were composed of 18 quinoa genotypes and modified BRS Piabiru (the currently used genotype), and the split-plots were divided into 4 different water regimes. The following variables were evaluated: productivity and productivity per unit of applied water (PUAA), plant height, flavonoids, anthocyanins, gas exchange, chlorophyll, leaf proline, and relative water content. Our results showed that water regimes between 309 and 389 mm can be recommended for quinoa in the Cerrado region. CPAC6 and CPAC13 presented the highest yield and PUAA under high and intermediate WRs, and hence were the most suitable for winter growth under irrigation. CPAC17 is most suitable for off-season growth under rainfed conditions, as it presented the highest PUAA under the low WRs (247 and 150). CPAC9 stood out in terms of accumulation of flavonoids and anthocyanins in all WRs. Physiological analyses revealed different responses of the genotypes to water restriction, together with symptoms of stress under lower water regimes. Our study reinforces the importance of detailed analyses of the relationship between productivity, physiology, and water use when choosing genotypes for planting and harvest in different seasons.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1088
Author(s):  
Mohamed Houssemeddine Sellami ◽  
Antonella Lavini ◽  
Davide Calandrelli ◽  
Giuseppe De Mastro ◽  
Cataldo Pulvento

Faba beans (Vicia faba L.), also known as fava beans, like other crops, are influenced by several factors: their genotype, environment, and management, as well as the interaction between these, have an important impact on seed yielding and seed quality traits. This study was conducted at three locations in South Italy between 2017 and 2019 to evaluate the sowing date effect on yield and yield components of three Vicia faba L., originating from cool climates. The results showed that seed yield (SY) and yield components declined with sowing delay. The crop’s environment (year × site) and management (sowing date) were found to explain 34.01% and 42.95% of the total seed yield variation, respectively. The data showed that the tested genotypes were positively influenced by the environment with sandy loam soil and early winter sowing date, resulting in either a greater number of SY and THS than in the other environment. The three faba bean genotypes showed tolerance to winter frost conditions in the two growing seasons.


2016 ◽  
Vol 41 (1) ◽  
pp. 151-162 ◽  
Author(s):  
MR Amin ◽  
MA Karim ◽  
MR Islam ◽  
S Aktar ◽  
MA Hossain

The field experiment was carried out with some selected mungbean genotypes viz. IPSA-13, VC-6173A, BU mug 2, BARI Mung-5 and IPSA-12 to observe the effect of 4-days flooding on their growth and yield of mungbean under field conditions at Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during September to November, 2011 maintaining 3-5 cm standing water at 24 days after emergence. Days to flowering and maturity delayed in flooded plants over control depending on the genotypes. Flooding significantly reduced Total Day Matters (TDM), number of pods per plant, seed size and seed yield of the mungbean genotypes over control. Considering higher seed yield, larger seed size and less yield reduction relative to control VC-6173A, BU mug 2 and IPSA-13 were found tolerant to soil flooding condition.Bangladesh J. Agril. Res. 41(1): 151-162, March 2016


1990 ◽  
Vol 115 (2) ◽  
pp. 245-251 ◽  
Author(s):  
J.O. Payero ◽  
M.S. Bhangoo ◽  
J.J. Steiner

The effects of six applied N treatments differing by rates and frequencies of application on the yield and quality of pepper (Capsicum annuum var. annuum L. `Anaheim Chili') grown for seed was studied. The timing of N applications was based on crop phenology, leaf petiole nitrate-nitrogen concentrations (NO3-N) minimum thresholds, and scheduled calendar applications of fixed amounts of N. Solubilized NH4NO3 was applied through a trickle-irrigation system to ensure uniform and timely applications of N. Rate of mature (green and red) fruit production was unaffected by any treatment except weekly applications of 28 kg·ha-1 of N, which stopped production of mature fruit before all other treatments. Early season floral bud and flower production increased with increasing amounts of N. The two highest total N treatments produced more floral buds and flowers late in the season than the other treatments. Total fruit production was maximized at 240 kg N/ha. Differences in total fruit production due to frequency of N application resulted at the highest total N level. Red fruit production tended to be maximized with total seasonal applied N levels of 240 kg·ha-1 and below, although weekly applications of N reduced production. Total seed yield was a function of red fruit production. Pure-1ive seed (PLS) production was a function of total seed production. Nitrogen use efficiency (NUE) for red fruit production also decreased with N rates >240 kg·ha-1, but PLS yield and NUE decreased in a near-linear fashion as the amount of total seasonal applied N increased, regardless of application frequency. Season average NO3-N (AVE NO3-N) values >4500 mg·kg-1 had total seed and PLS yields less than those treatments <4000 mg·kg-1. Six-day germination percentage was reduced with weekly N applications of 14 kg·ha-1. Seed mass was reduced with weekly N applications of 28 kg·ha-1. Final germination percent, seedling root length and weight, and field emergence were unaffected by any of the N treatments. These findings indicate that different N management strategies are needed to maximize seed yield compared to fruit yield and, therefore, there may be an advantage to growing `Anaheim Chili' pepper specifically for seed.


2021 ◽  
Vol 11 ◽  
Author(s):  
Anjuman Arif ◽  
Najma Parveen ◽  
Muhammad Qandeel Waheed ◽  
Rana Muhammad Atif ◽  
Irem Waqar ◽  
...  

This study was planned with the purpose of evaluating the drought tolerance of advanced breeding lines of chickpea in natural field conditions. Two methods were employed to impose field conditions; the first: simulating drought stress by growing chickpea genotypes at five rainfed areas, with Faisalabad as the non-stressed control environment; and the second: planting chickpea genotypes in spring to simulate a drought stress environment, with winter-sowing serving as the non-stressed environment. Additive main effects and multiplicative interaction (AMMI) and generalized linear models (GLM) models were both found to be equally effective in extracting main effects in the rainfed experiment. Results demonstrated that environment influenced seed yield, number of primary and secondary branches, number of pods, and number of seeds most predominantly; however, genotype was the main source of variation in 100 seed weight and plant height. The GGE biplot showed that Faisalabad, Kallur Kot, and Bhakkar were contributing the most in the GEI, respectively, while Bahawalpur, Bhawana, and Karor were relatively stable environments, respectively. Faisalabad was the most, and Bhakkar the least productive in terms of seed yield. The best genotypes to grow in non-stressed environments were CH39/08, CH40/09, and CH15/11, whereas CH28/07 and CH39/08 were found suitable for both conditions. CH55/09 displayed the best performance in stress conditions only. The AMMI stability and drought-tolerance indices enabled us to select genotypes with differential performance in both conditions. It is therefore concluded that the spring-sown experiment revealed a high-grade drought stress imposition on plants, and that the genotypes selected by both methods shared quite similar rankings, and also that manually computed drought-tolerance indices are also comparable for usage for better genotypic selections. This study could provide sufficient evidence for using the aforementioned as drought-tolerance evaluation methods, especially for countries and research organizations who have limited resources and funding for conducting multilocation trials, and performing sophisticated analyses on expensive software.


1985 ◽  
Vol 104 (3) ◽  
pp. 589-593 ◽  
Author(s):  
T. O. Tayo

SummaryPigeon pea (variety Cita-1) was sown on ridges at two plantings in the early and late seasons of 1983 at the University of Ibadan, Two to three weeks after the plants reached maturity and the pods had been harvested by hand-picking, the plants were either ratooned by cutting off the tops at a height of 30 and 60 cm or left intact.At the end of the first and second regrowths, the plants ratooned at 30 and 60 cm had performed better than those left intact in terms of growth and yield characters as well as seed yield. However, the plants ratooned at 30 cm performed best followed by those ratooned at 60 cm. The total seed yield from the planting was 3–6 times higher than if the crop had been harvested once.It would seem that ratooning at 30 cm would give the highest returns from a single planting under the prevailing lowland tropical conditions.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
G. B. Polignano ◽  
V. Bisignano ◽  
V. Tomaselli ◽  
P. Uggenti ◽  
V. Alba ◽  
...  

Eight grass pea lines grown in three different seasons were evaluated for the stability of seed yield, 100 seeds weight, flowering time, plant height, and biomass. Significant differences existed among years, lines, and lines years interaction for all traits except for 100 seeds weight. Two methods of multivariate analysis cluster and principal components were utilized to determine: firstly, whether a pattern existed among lines in their response across years and secondly to examine the relationships among them. In both analyses, each line was presented as a vector whose elements were given by the performance of lines in each year. The analyses used arranged the lines into groups that were differentiable in terms of performances and stability. Our results provide useful information to aid the choice of grass pea lines in the Mediterranean marginal areas.


Sign in / Sign up

Export Citation Format

Share Document