scholarly journals Modularity and evolution of flower shape: the role of efficiency, development, and spandrels in Erica

2019 ◽  
Author(s):  
Dieter Reich ◽  
Andreas Berger ◽  
Maria von Balthazar ◽  
Marion Chartier ◽  
Mahboubeh Sherafati ◽  
...  

SummaryThree hypotheses can explain floral modularity: the attraction-reproduction, the efficiency, and the developmental hypotheses.In order to test these hypotheses and understand if pollination specialisation and pollination syndrome influence floral modularity, we focussed on the genus Erica: we gathered 3D data from flowers of species with diverse pollination syndromes via Computed Tomography, and analysed their shape via geometric morphometrics. In order to provide an evolutionary framework for our results we tested the evolutionary mode of floral shape, size, and integration under pollination syndrome regimes, and - for the first time-reconstructed the high-dimensional floral shape of their most recent common ancestor.We demonstrate, for the first time, that the modularity of generalist flowers depends on development and that of specialists is linked to efficiency: in bird syndrome flower, efficiency modules were associated with pollen deposition and receipt, whereas in long-proboscid fly syndrome, they were associated with restricting the access to the floral reward. Only shape PC1 showed selection towards multiple optima, suggesting that PC1 was co-opted by evolution to adapt flowers to novel pollinators. Whole floral shape followed an OU model of evolution, and demonstrated relatively late differentiation.Flower shape modularity thus crucially depends on pollinator specialisation and class.


2010 ◽  
Vol 7 (11) ◽  
pp. 3387-3402 ◽  
Author(s):  
S. Trajanovski ◽  
C. Albrecht ◽  
K. Schreiber ◽  
R. Schultheiß ◽  
T. Stadler ◽  
...  

Abstract. Ancient Lake Ohrid on the Balkan Peninsula is considered to be the oldest ancient lake in Europe with a suggested Plio-/Pleistocene age. Its exact geological age, however, remains unknown. Therefore, molecular clock data of Lake Ohrid biota may serve as an independent constraint of available geological data, and may thus help to refine age estimates. Such evolutionary data may also help unravel potential biotic and abiotic factors that promote speciation events. Here, mitochondrial sequencing data of one of the largest groups of endemic taxa in the Ohrid watershed, the leech genus Dina, is used to test whether it represents an ancient lake species flock, to study the role of potential horizontal and vertical barriers in the watershed for evolutionary events, to estimate the onset of diversification in this group based on molecular clock analyses, and to compare this data with data from other endemic species for providing an approximate time frame for the origin of Lake Ohrid. Based on the criteria speciosity, monophyly and endemicity, it can be concluded that Dina spp. from the Ohrid watershed, indeed, represents an ancient lake species flock. Lineage sorting of its species, however, does not seem to be complete and/or hybridization may occur. Analyses of population structures of Dina spp. in the Ohrid watershed indicate a horizontal zonation of haplotypes from spring and lake populations, corroborating the role of lake-side springs, particularly the southern feeder springs, for evolutionary processes in endemic Ohrid taxa. Vertical differentiation of lake taxa, however, appears to be limited, though differences between populations from the littoral and the profundal are apparent. Molecular clock analyses indicate that the most recent common ancestor of extant species of this flock is approximately 1.99 ± 0.83 million years (Ma) old, whereas the split of the Ohrid Dina flock from a potential sister taxon outside the lake is estimated at 8.30 ± 3.60 Ma. Comparisons with other groups of endemic Ohrid species indicated that in all cases, diversification within the watershed started ≤2 Ma ago. Thus, this estimate may provide information on a minimum age for the origin of Lake Ohrid. Maximum ages are less consistent and generally less reliable. But cautiously, a maximum age of 3 Ma is suggested. Interestingly, this time frame of approximately 2–3 Ma ago for the origin of Lake Ohrid, generated based on genetic data, well fits the time frame most often used in the literature by geologists.



2021 ◽  
Vol 166 (4) ◽  
pp. 1103-1112
Author(s):  
Eun-Ha Hwang ◽  
Green Kim ◽  
Hoyin Chung ◽  
Hanseul Oh ◽  
Jong-Hwan Park ◽  
...  

AbstractDengue virus (DV) is a mosquito-borne virus that is endemic to many tropical and subtropical areas. Recently, the annual incidence of DV infection has increased worldwide, including in Korea, due to global warming and increased global travel. We therefore sought to characterize the molecular and evolutionary features of DV-1 and DV-4 isolated from Korean overseas travelers. We used phylogenetic analysis based on the full coding region to classify isolates of DV-1 in Korea into genotype I (43251, KP406802), genotype IV (KP406803), and genotype V (KP406801). In addition, we found that strains of DV-4 belonged to genotype I (KP406806) and genotype II (43257). Evidence of positive selection in DV-1 strains was identified in the C, prM, NS2A, and NS5 proteins, whereas DV-4 showed positive selection only in the non-structural proteins NS2A, NS3, and NS5. The substitution rates per site per year were 5.58 × 10-4 and 6.72 × 10-4 for DV-1 and DV-4, respectively, and the time of the most recent common ancestor was determined using the Bayesian skyline coalescent method. In this study, the molecular, phylogenetic, and evolutionary characteristics of Korean DV-1 and DV-4 isolates were evaluated for the first time.



2010 ◽  
Vol 7 (4) ◽  
pp. 5011-5045 ◽  
Author(s):  
S. Trajanovski ◽  
C. Albrecht ◽  
K. Schreiber ◽  
R. Schultheiß ◽  
T. Stadler ◽  
...  

Abstract. Ancient Lake Ohrid on the Balkan Peninsula is considered to be the oldest ancient lake in Europe with a suggested Plio-Pleistocene age. Its exact geological age, however, remains unknown. Therefore, molecular clock data of Lake Ohrid biota may serve as an independent constraint of available geological data, and may thus also help to refine age estimates. Such evolutionary data may also help unravel potential biotic and abiotic factors that promote speciation events. Here, mitochondrial sequencing data of one of the largest groups of endemic taxa in Lake Ohrid, the leech genus Dina, is used to test whether it represents an ancient lake species flock, to study the role of horizontal and vertical barriers in Lake Ohrid for evolutionary events, to estimate the onset of intralacustrine diversification in this group based on molecular clock analyses, and to compare this data with data from other endemic species for providing an approximate time frame for the origin of Lake Ohrid. Based on the criteria speciosity, monophyly and endemicity, it can be concluded that Lake Ohrid Dina, indeed, represents an ancient lake species flock. Lineage sorting of its species, however, does not seem to be complete. Analyses of population structures of Dina spp. in the Ohrid watershed indicate a horizontal zonation of haplotypes from spring and lake populations, corroborating the role of lake-side springs, particularly the southern feeder springs, for evolutionary processes in endemic Ohrid taxa. Vertical differentiation of lake taxa, however, appears to be limited, though differences between populations from the littoral and the profundal are apparent. Molecular clock analyses indicate that the most recent common ancestor of extant species of this flock is approximately 1.99±0.83 Ma old, whereas the split of the Lake Ohrid Dina flock from a potential sister taxon outside the lake is estimated at 8.30±3.60 Ma. Comparisons with other groups of endemic Ohrid species indicated that in all cases, intralacustrine diversification started ≤2 Ma ago. Thus, this estimate may provide information on a minimum age for the origin of Lake Ohrid. Maximum ages are less consistent and generally less reliable. But cautiously, a maximum age of 3 Ma is suggested. Interestingly, this time frame of approximately 2–3 Ma for the origin of Lake Ohrid, generated based solely on evolutionary data, well fits the time frame most often used in the literature by geologists. Future studies must show whether this concurrence holds true.



Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1257
Author(s):  
Emmanuel Alakunle ◽  
Ugo Moens ◽  
Godwin Nchinda ◽  
Malachy Ifeanyi Okeke

Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is a member of orthopoxvirus genus. The reemergence of MPXV in 2017 (at Bayelsa state) after 39 years of no reported case in Nigeria, and the export of travelers’ monkeypox (MPX) from Nigeria to other parts of the world, in 2018 and 2019, respectively, have raised concern that MPXV may have emerged to occupy the ecological and immunological niche vacated by smallpox virus. This review X-rays the current state of knowledge pertaining the infection biology, epidemiology, and evolution of MPXV in Nigeria and worldwide, especially with regard to the human, cellular, and viral factors that modulate the virus transmission dynamics, infection, and its maintenance in nature. This paper also elucidates the role of recombination, gene loss and gene gain in MPXV evolution, chronicles the role of signaling in MPXV infection, and reviews the current therapeutic options available for the treatment and prevention of MPX. Additionally, genome-wide phylogenetic analysis was undertaken, and we show that MPXV isolates from recent 2017 outbreak in Nigeria were monophyletic with the isolate exported to Israel from Nigeria but do not share the most recent common ancestor with isolates obtained from earlier outbreaks, in 1971 and 1978, respectively. Finally, the review highlighted gaps in knowledge particularly the non-identification of a definitive reservoir host animal for MPXV and proposed future research endeavors to address the unresolved questions.



Botany ◽  
2009 ◽  
Vol 87 (3) ◽  
pp. 272-282 ◽  
Author(s):  
Paul Wilson ◽  
Elizabeth Anne Jordan

Flower size dimensions, colour, and nectar quantities potentially account for differences in pollinator species between Penstemon centranthifolius (Benth.) Benth. (tubular, red, nectar-rich, hummingbird pollinated) and Penstemon spectabilis Thurber (wide, purple, nectar-poor, hymenopteran pollinated). For this study, floral characters and pollinator attraction were measured for the two species, F1 hybrids, and backcrosses. Floral dimensions, nectar characters, and color spectra combined in the hybrids in a largely linear fashion, consistent with an interpretation of net additive gene expression. In other words, the changes from one pollination syndrome to another appeared to be quantitative. There were some deviations from linearity, but not so much as to obscure the linear effect. Generally, backcrosses were not more variable than F1 hybrids or pure parents. Hummingbirds preferred P. centranthifolius over P. spectabilis. The strength of this preference varied by year, and the birds did not respond to hybrids in a strictly linear fashion. When there was a preference, adding nectar hourly to under-visited plants quickly changed the foraging of hummingbirds. Bees in the genus Ceratina preferred the bee-pollination syndrome of P. spectabilis.



2021 ◽  
Vol 288 (1957) ◽  
pp. 20211402
Author(s):  
Nadia G. Cervino ◽  
Agustín J. Elias-Costa ◽  
Martín O. Pereyra ◽  
Julián Faivovich

The eyes of frogs and toads (Anura) are among their most fascinating features. Although several pupil shapes have been described, the diversity, evolution, and functional role of the pupil in anurans have received little attention. Studying photographs of more than 3200 species, we surveyed pupil diversity, described their morphological variation, tested correlation with adult habits and diel activity, and discuss major evolutionary patterns considering iris anatomy and visual ecology. Our results indicate that the pupil in anurans is a highly plastic structure, with seven main pupil shapes that evolved at least 116 times during the history of the group. We found no significant correlation between pupil shape, adult habits, and diel activity, with the exception of the circular pupil and aquatic habits. The vertical pupil arose at least in the most-recent common ancestor of Anura + Caudata, and this morphology is present in most early-diverging anuran clades. Subsequently, a horizontal pupil, a very uncommon shape in vertebrates, evolved in most neobatrachian frogs. This shape evolved into most other known pupil shapes, but it persisted in a large number of species with diverse life histories, habits, and diel activity patterns, demonstrating a remarkable functional and ecological versatility.



2018 ◽  
Author(s):  
David Wilby ◽  
Tobio Aarts ◽  
Pierre Tichit ◽  
Andrew Bodey ◽  
Christoph Rau ◽  
...  

AbstractMany insects have triplets of camera type eyes, called ocelli, whose function remains unclear for most species. Here, we investigate the ocelli of the bumblebee, Bombus terrestris, using reconstructed 3D data from X-ray micro computed-tomography scans combined with computational ray-tracing simulations. This method enables us, not only to predict the visual fields of the ocelli, but to explore for the first time the effect that hair has on them as well as the difference between worker female and male ocelli.We find that bumblebee ocellar fields of view are directed forward and dorsally, incorporating the horizon as well as the sky. There is substantial binocular overlap between the median and lateral ocelli, but no overlap between the two lateral ocelli. Hairs in both workers and males occlude the ocellar field of view, mostly laterally in the worker median ocellus and dorsally in the lateral ocelli. There is little to no sexual dimorphism in the ocellar visual field, suggesting that in B. terrestris they confer no advantage to mating strategies.We compare our results with published observations for the visual fields of compound eyes in the same species as well as with the ocellar vision of other bee and insect species.



2020 ◽  
pp. 1-12
Author(s):  
Alexey V. Lopatin ◽  
Alexander O. Averianov

Abstract Arnebolagus leporinus Lopatin and Averianov, 2008, known previously from a single tooth (P3) from the early Eocene Bumban Member of Naran Bulak Formation at Tsagan-Khushu locality in Mongolia, is redescribed based on additional specimens from the type locality. Phylogenetic relationships of Eocene stem lagomorphs from Asia and North America are reconstructed for the first time based on a parsimony analysis of 54 morphological characters and 32 taxa. Two new node-based clades are proposed, stemming from the most-recent common ancestor of Lepus Linnaeus, 1758 and Dawsonolagus Li, Meng, and Wang, 2007 (Eulagomorpha new clade, ‘lagomorphs of the modern aspect’) and from the most-recent common ancestor of Lepus and Gobiolagus Burke, 1941 (Epilagomorpha new clade). Arnebolagus Lopatin and Averianov, 2008 is geologically oldest and the most plesiomorphic eulagomorph, similar to Dawsonolagus from the early Eocene Arshanto Formation of China in its weakly pronounced, unilateral hypsodonty of the upper cheek teeth and its brachyodont lower cheek teeth with separate roots. Arnebolagus is more plesiomorphic than Dawsonolagus in having two roots of P4. Arnebolagus is the oldest known eulagomorph, the only taxon known from the earliest Eocene Bumbanian Asiatic Land Mammal Age (ALMA). The other Asiatic early Eocene eulagomorphs (Dawsonolagus, Aktashmys Averianov, 1994, and Romanolagus Shevyreva, 1995) come from the Arshantan ALMA.



2018 ◽  
Author(s):  
Simon Ripperger ◽  
Linus Günther ◽  
Hanna Wieser ◽  
Niklas Duda ◽  
Martin Hierold ◽  
...  

SummaryBats are a highly gregarious taxon suggesting that social information should be readily available for making decision. Social information transfer in maternity colonies might be a particularly efficient mechanism for naïve pups to acquire information on resources from informed adults. However, such behaviour is difficult to study in the wild, in particular in elusive and small-bodied animals such as bats.The goal of this study was to investigate the role of social information in acquiring access to two types of resources, which are crucial in the life of a juvenile bat: suitable roosting sites and fruitful feeding grounds. We hypothesized that fledging offspring will make use of social information by following informed members of the social groups to unknown roosts or foraging sites.In the present study we applied for the first time the newly developed miniaturized proximity sensor system ‘BATS’, a fully automated system for documenting associations among individual bats both while roosting and while on the wing. We quantified associations among juveniles and other group member while switching roosts and during foraging.We found clear evidence for information transfer while switching roosts, mainly among juveniles and their genetically identified mothers. Anecdotal observations suggest intentional guidance behaviour by mothers, indicated by repeated commuting flights among the pup and the target roost. Infrequent, short meetings with colony members other than the mother indicate local enhancement at foraging sites, but no intentional information transfer.Our study illustrates how advances in technology enable researchers to solve long-standing puzzles. Miniaturized proximity sensors facilitate the automated collection of continuous data sets and represent an ideal tool to gain novel insights into the sociobiology of elusive and small-bodied species.



2020 ◽  
Author(s):  
Seungho Kang ◽  
Alexander K. Tice ◽  
Courtney W. Stairs ◽  
Daniel J. G. Lahr ◽  
Robert E. Jones ◽  
...  

AbstractIntegrins are transmembrane receptor proteins that activate signal transduction pathways upon extracellular matrix binding. The Integrin Mediated Adhesion Complex (IMAC), mediates various cell physiological process. The IMAC was thought to be an animal specific machinery until over the last decade these complexes were discovered in Obazoa, the group containing animals, fungi, and several microbial eukaryote lineages. Amoebozoa is the eukaryotic supergroup sister to Obazoa. Even though Amoebozoa represents the closest outgroup to Obazoa, little genomic-level data and attention to gene inventories has been given to the supergroup. To examine the evolutionary history of the IMAC, we examine gene inventories of deeply sampled set of 100+ Amoebozoa taxa, including new data from several taxa. From these robust data sampled from the entire breadth of known amoebozoan clades, we show the presence of an ancestral complex of integrin adhesion proteins that predate the evolution of the Amoebozoa. Our results highlight that many of these proteins appear to have evolved earlier in eukaryote evolution than previously thought. Co-option of an ancient protein complex was key to the emergence of animal type multicellularity. The role of the IMAC in a unicellular context is unknown but must also play a critical role for at least some unicellular organisms.



Sign in / Sign up

Export Citation Format

Share Document