scholarly journals Invasion and extinction dynamics of mating types under facultative sexual reproduction

2019 ◽  
Author(s):  
Peter Czuppon ◽  
George W. A. Constable

AbstractIn sexually reproducing isogamous species, syngamy between gametes is generally not indiscriminate, but rather restricted to occurring between complementary self-incompatible mating types. A longstanding question regards the evolutionary pressures that control the number of mating types observed in natural populations, which ranges from two to many thousands. Here, we describe a population genetic null model of this reproductive system and derive expressions for the stationary probability distribution of the number of mating types, the establishment probability of a newly arising mating type and the mean time to extinction of a resident type. Our results yield that the average rate of sexual reproduction in a population correlates positively with the expected number of mating types observed. We further show that the low number of mating types predicted in the rare-sex regime is primarily driven by low invasion probabilities of new mating type alleles, with established resident alleles being very stable over long evolutionary periods. Moreover, our model naturally exhibits varying selection strength dependent on the number of present mating types. This results in higher extinction and lower invasion rates for an increasing number of residents.

Author(s):  
Suguru Ariyoshi ◽  
Yusuke Imazu ◽  
Ryuji Ohguri ◽  
Ryo Katsuta ◽  
Arata Yajima ◽  
...  

Abstract The heterothallic group of the plant pathogen Phytophthora can sexually reproduce between the cross-compatible mating types A1 and A2. The mating hormone α2, produced by A2 mating type and utilized to promote the sexual reproduction of the partner A1 type, is known to be biosynthesized from phytol. In this study, we identified two biosynthetic intermediates, 11- and 16-hydroxyphytols (1 and 2), for α2 by administering the synthetic intermediates to an A2 type strain to produce α2 and by administering phytol to A2 strains to detect the intermediates in the mycelia. The results suggest that α2 is biosynthesized by possibly two cytochrome P450 oxygenases via two hydroxyphytol intermediates (1 and 2) in A2 hyphae and secreted outside.


2007 ◽  
Vol 6 (7) ◽  
pp. 1189-1199 ◽  
Author(s):  
M. Alejandra Mandel ◽  
Bridget M. Barker ◽  
Scott Kroken ◽  
Steven D. Rounsley ◽  
Marc J. Orbach

ABSTRACT Coccidioides species, the fungi responsible for the valley fever disease, are known to reproduce asexually through the production of arthroconidia that are the infectious propagules. The possible role of sexual reproduction in the survival and dispersal of these pathogens is unexplored. To determine the potential for mating of Coccidioides, we analyzed genome sequences and identified mating type loci characteristic of heterothallic ascomycetes. Coccidioides strains contain either a MAT1-1 or a MAT1-2 idiomorph, which is 8.1 or 9 kb in length, respectively, the longest reported for any ascomycete species. These idiomorphs contain four or five genes, respectively, more than are present in the MAT loci of most ascomycetes. Along with their cDNA structures, we determined that all genes in the MAT loci are transcribed. Two genes frequently found in common sequences flanking MAT idiomorphs, APN2 and COX13, are within the MAT loci in Coccidioides, but the MAT1-1 and MAT1-2 copies have diverged dramatically from each other. Data indicate that the acquisition of these genes in the MAT loci occurred prior to the separation of Coccidioides from Uncinocarpus reesii. An analysis of 436 Coccidioides isolates from patients and the environment indicates that in both Coccidioides immitis and C. posadasii, there is a 1:1 distribution of MAT loci, as would be expected for sexually reproducing species. In addition, an analysis of isolates obtained from 11 soil samples demonstrated that at three sampling sites, strains of both mating types were present, indicating that compatible strains were in close proximity in the environment.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 173-176 ◽  
Author(s):  
M. Sedegui ◽  
R. B. Carroll ◽  
A. L. Morehart ◽  
T. A. Evans ◽  
S. H. Kim ◽  
...  

ABSRACT In 1996 to 1998, a late-blight survey was conducted in potato- and tomato-growing regions of Morocco. A total of 149 isolates of Phytophthora infestans were collected and analyzed for the glucose-6-phosphate isomerase (Gpi) and peptidase (Pep) alleles, mating types, and metalaxyl sensitivities. Four genotypes were identified: MO-1 (mating type A1, Gpi 100/100, Pep 92/100), MO-2 (mating type A1, Gpi 86/100, Pep 92/100), MO-3 (mating type A2 Gpi 100/100, Pep 100/100), and MO-4 (mating type A1, Gpi 100/100, Pep 100/100). The potato isolates were MO-1 (1996 & 97), MO-3 (1998), and MO-4 (1998). The frequencies of A1 (MO-4) and A2 (MO-3) mating types in potato fields in 1998 were 26 and 74%, respectively. Potato isolates were pathogenic to both potatoes and tomatoes. The isolates collected from tomatoes in 1997 and 1998 were MO-2. Potato and tomato isolates were insensitive and sensitive to metalaxyl, respectively. The change of genotype population in 1998 was probably caused by migration of a new genotype from Europe associated with importation of potato seed. The detection of A1 and A2 mating types in the same potato field indicates the potential for sexual reproduction of P. infestans in Morocco.


2013 ◽  
Vol 103 (10) ◽  
pp. 1045-1051 ◽  
Author(s):  
Hun Kim ◽  
Annakay D. Newell ◽  
Robyn G. Cota-Sieckmeyer ◽  
John C. Rupe ◽  
Ahmad M. Fakhoury ◽  
...  

Cercospora sojina causes frogeye leaf spot of soybean, which can cause serious economic losses in the United States. In this study, 132 C. sojina isolates were collected from six fields (from two counties, Cross and Crawford) in Arkansas. To determine mating type, a multiplex polymerase chain reaction assay was developed with primers specific for C. sojina. Of the 132 isolates, 68 isolates had the MAT1-1-1 idiomorph and 64 isolates had the MAT1-2 idiomorph; no isolates possessed both idiomorphs. Both mating types were present in a variety of spatial scales, including separate lesions on individual leaves. Clone-corrected data from eight microsatellites indicated that mating-type loci were present in approximately equal proportions in all populations analyzed, which suggests that Arkansas populations of C. sojina are undergoing cryptic sexual reproduction. All six populations evaluated had high genotypic diversity of 26 to 79%. In addition, among strains isolated from a single leaf, multiple and distinct haplotypes were associated with both mating types, supporting the hypothesis that sexual reproduction occurs within the populations. Most populations showed significant gametic disequilibrium but levels of disequilibrium were relatively low, particularly in populations from Crawford County. A low differentiation index (GST) was observed for all simple-sequence repeat markers across all populations. Furthermore, the value of G statistics between populations suggests that significant genetic exchange exists among the populations. Taken together, these results demonstrate that C. sojina populations from Arkansas are genetically diverse and most likely undergoing sexual reproduction.


Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 855-869 ◽  
Author(s):  
Domenico Rau ◽  
Frank J Maier ◽  
Roberto Papa ◽  
Anthony H.D Brown ◽  
Virgilio Balmas ◽  
...  

Pyrenophora teres f. sp. teres mating-type genes (MAT-1: 1190 bp; MAT-2: 1055 bp) have been identified. Their predicted proteins, measuring 379 and 333 amino acids, respectively, are similar to those of other Pleosporales, such as Pleospora sp., Cochliobolus sp., Alternaria alternata, Leptosphaeria maculans, and Phaeosphaeria nodorum. The structure of the MAT locus is discussed in comparison with those of other fungi. A mating-type PCR assay has also been developed; with this assay we have analyzed 150 isolates that were collected from 6 Sardinian barley landrace populations. Of these, 68 were P. teres f. sp. teres (net form; NF) and 82 were P. teres f. sp. maculata (spot form; SF). Within each mating type, the NF and SF amplification products were of the same length and were highly similar in sequence. The 2 mating types were present in both the NF and the SF populations at the field level, indicating that they have all maintained the potential for sexual reproduction. Despite the 2 forms being sympatric in 5 fields, no intermediate isolates were detected with amplified fragment length polymorphism (AFLP) analysis. These results suggest that the 2 forms are genetically isolated under the field conditions. In all of the samples of P. teres, the ratio of the 2 mating types was consistently in accord with the 1:1 null hypothesis. This ratio is expected when segregation distortion and clonal selection among mating types are absent or asexual reproduction is rare. Overall, sexual reproduction appears to be the major process that equalizes the frequencies of the 2 mating types within populations.Key words: Pyrenophora teres, mating-types, AFLPs, sexual reproduction, selection, barley.


2018 ◽  
Vol 71 ◽  
pp. 289-292 ◽  
Author(s):  
Kieran D. Mellow ◽  
Joy L. Tyson ◽  
Robert A. Fullerton ◽  
Angelika Tugaga ◽  
Fa'alelei Tunupopo ◽  
...  

Taro leaf blight (TLB) caused by Phytophthora colocasiae is a damaging disease that destroyed Samoa’s taro industry following its introduction in 1993. The aim of this study was to determine the occurrence of the A1 and A2 mating types of P. colocasiae for a more comprehensive understanding of the risk the pathogen poses for the future of the taro industry in Samoa. In September 2015, 54 isolates of P. colocasiae were collected from taro leaf blight lesions from 13 farms around the island of Upolu, Samoa. The mating types of each isolate was determined by observation of oospore formation when paired with tester isolates of Phytophthora nicotianae of known mating types (A1 or A2). Fifty isolates were found to be A2 mating type and four did not form oospores with either mating type. No A1 or self-fertile isolates were found. These results suggest that the A1 mating type has not been introduced to the island of Upolu, preventing the formation of oospores between compatible mating types of P. colocasiae and lessening the risk of new and potentially more threatening genotypes of the pathogen from emerging through genetic recombination. Keywords taro leaf blight, Colocasia esculenta, taro, sexual reproduction


2020 ◽  
Vol 12 (4) ◽  
pp. 243-258 ◽  
Author(s):  
Wen-Juan Ma ◽  
Fantin Carpentier ◽  
Tatiana Giraud ◽  
Michael E Hood

Abstract Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.


Sign in / Sign up

Export Citation Format

Share Document