scholarly journals Specialized medial prefrontal-amygdala coordination in other-regarding decision preference

2019 ◽  
Author(s):  
Olga Dal Monte ◽  
Cheng-Chi J. Chu ◽  
Nicholas A. Fagan ◽  
Steve W. C. Chang

AbstractSocial behaviors recruit multiple cognitive processes requiring coordinated interactions among brain regions. Oscillatory coupling provides one mechanism for cortical and subcortical neurons to synchronize their activity. However, it remains unknown how neurons from different nodes in the social brain network interact when making social decisions. We investigated neuronal coupling between the rostral anterior cingulate gyrus of the medial prefrontal cortex and the basolateral amygdala while monkeys expressed context-dependent positive other-regarding preference (ORP) or negative ORP impacting the reward of another monkey. We found an enhanced synchronization between the two nodes for positive ORP, but a suppressed synchronization for negative ORP. These interactions occurred in dedicated frequency channels depending on the area contributing spikes, exhibited a specific directionality of information flow associated with expressing positive ORP, and could be used to decode social decisions. These findings support that specialized coordination in the medial prefrontal-amygdala network underlies social decision preference.

2021 ◽  
Vol 30 ◽  
Author(s):  
Niccolò Zovetti ◽  
Maria Gloria Rossetti ◽  
Cinzia Perlini ◽  
Paolo Brambilla ◽  
Marcella Bellani

Abstract According to the social brain hypothesis, the human brain includes a network designed for the processing of social information. This network includes several brain regions that elaborate social cues, interactions and contexts, i.e. prefrontal paracingulate and parietal cortices, amygdala, temporal lobes and the posterior superior temporal sulcus. While current literature suggests the importance of this network from both a psychological and evolutionary perspective, little is known about its neurobiological bases. Specifically, only a paucity of studies explored the neural underpinnings of constructs that are ascribed to the social brain network functioning, i.e. objective social isolation and perceived loneliness. As such, this review aimed to overview neuroimaging studies that investigated social isolation in healthy subjects. Social isolation correlated with both structural and functional alterations within the social brain network and in other regions that seem to support mentalising and social processes (i.e. hippocampus, insula, ventral striatum and cerebellum). However, results are mixed possibly due to the heterogeneity of methods and study design. Future neuroimaging studies with longitudinal designs are needed to measure the effect of social isolation in experimental v. control groups and to explore its relationship with perceived loneliness, ultimately helping to clarify the neural correlates of the social brain.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
M. G. Tana ◽  
E. Montin ◽  
S. Cerutti ◽  
A. M. Bianchi

Functional magnetic resonance imaging (fMRI) was performed in eight healthy subjects to identify the localization, magnitude, and volume extent of activation in brain regions that are involved in blood oxygen level-dependent (BOLD) response during the performance of Conners' Continuous Performance Test (CPT). An extensive brain network was activated during the task including frontal, temporal, and occipital cortical areas and left cerebellum. The more activated cluster in terms of volume extent and magnitude was located in the right anterior cingulate cortex (ACC). Analyzing the dynamic trend of the activation in the identified areas during the entire duration of the sustained attention test, we found a progressive decreasing of BOLD response probably due to a habituation effect without any deterioration of the performances. The observed brain network is consistent with existing models of visual object processing and attentional control and may serve as a basis for fMRI studies in clinical populations with neuropsychological deficits in Conners' CPT performance.


Author(s):  
Benjamin A. Devlin ◽  
Caroline J. Smith ◽  
Staci D. Bilbo

Many instances of sickness critically involve the immune system. The immune system talks to the brain in a bi-directional loop. This discourse affords the immune system immense control, such that it can influence behavior and optimize recovery from illness. These behavioral responses to infection are called sickness behaviors and can manifest in many ways, including changes in mood, motivation, or energy. Fascinatingly, most of these changes are conserved across species, and most organisms demonstrate some form of sickness behaviors. One of the most interesting sickness behaviors, and not immediately obvious, is altered sociability. Here, we discuss how the immune system impacts social behavior, by examining the brain regions and immune mediators involved in this process. We first outline how social behavior changes in response to infection in various species. Next, we explore which brain regions control social behavior and their evolutionary origins. Finally, we describe which immune mediators establish the link between illness and social behavior, in the context of both normal development and infection. Overall, we hope to make clear the striking similarities between the mechanisms that facilitate changes in sociability in derived and ancestral vertebrate, as well as invertebrate, species.


2020 ◽  
Vol 15 (4) ◽  
pp. 423-436
Author(s):  
Élodie Cauvet ◽  
Annelies van’t Westeinde ◽  
Roberto Toro ◽  
Ralf Kuja-Halkola ◽  
Janina Neufeld ◽  
...  

Abstract A female advantage in social cognition (SoC) might contribute to women’s underrepresentation in autism spectrum disorder (ASD). The latter could be underpinned by sex differences in social brain structure. This study investigated the relationship between structural social brain networks and SoC in females and males in relation to ASD and autistic traits in twins. We used a co-twin design in 77 twin pairs (39 female) aged 12.5 to 31.0 years. Twin pairs were discordant or concordant for ASD or autistic traits, discordant or concordant for other neurodevelopmental disorders or concordant for neurotypical development. They underwent structural magnetic resonance imaging and were assessed for SoC using the naturalistic Movie for the Assessment of Social Cognition. Autistic traits predicted reduced SoC capacities predominantly in male twins, despite a comparable extent of autistic traits in each sex, although the association between SoC and autistic traits did not differ significantly between the sexes. Consistently, within-pair associations between SoC and social brain structure revealed that lower SoC ability was associated with increased cortical thickness of several brain regions, particularly in males. Our findings confirm the notion that sex differences in SoC in association with ASD are underpinned by sex differences in brain structure.


2015 ◽  
Vol 112 (52) ◽  
pp. 16012-16017 ◽  
Author(s):  
Steve W. C. Chang ◽  
Nicholas A. Fagan ◽  
Koji Toda ◽  
Amanda V. Utevsky ◽  
John M. Pearson ◽  
...  

Social decisions require evaluation of costs and benefits to oneself and others. Long associated with emotion and vigilance, the amygdala has recently been implicated in both decision-making and social behavior. The amygdala signals reward and punishment, as well as facial expressions and the gaze of others. Amygdala damage impairs social interactions, and the social neuropeptide oxytocin (OT) influences human social decisions, in part, by altering amygdala function. Here we show in monkeys playing a modified dictator game, in which one individual can donate or withhold rewards from another, that basolateral amygdala (BLA) neurons signaled social preferences both across trials and across days. BLA neurons mirrored the value of rewards delivered to self and others when monkeys were free to choose but not when the computer made choices for them. We also found that focal infusion of OT unilaterally into BLA weakly but significantly increased both the frequency of prosocial decisions and attention to recipients for context-specific prosocial decisions, endorsing the hypothesis that OT regulates social behavior, in part, via amygdala neuromodulation. Our findings demonstrate both neurophysiological and neuroendocrinological connections between primate amygdala and social decisions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicole Steinhardt ◽  
Ramana Vishnubhotla ◽  
Yi Zhao ◽  
David M. Haas ◽  
Gregory M. Sokol ◽  
...  

Purpose: Infants of mothers with opioid and substance use can present with postnatal withdrawal symptoms and are at risk of poor neurodevelopmental outcomes in later childhood. Identifying methods to evaluate the consequences of substance exposure on the developing brain can help initiate proactive therapies to improve outcomes for opioid-exposed neonates. Additionally, early brain imaging in infancy has the potential to identify early brain developmental alterations that could prognosticate neurodevelopmental outcomes in these children. In this study, we aim to identify differences in global brain network connectivity in infants with prenatal opioid exposure compared to healthy control infants, using resting-state functional MRI performed at less than 2 months completed gestational age.   Materials and Methods: In this prospective, IRB-approved study, we recruited 20 infants with prenatal opioid exposure and 20 healthy, opioid naïve infants. Anatomic imaging and resting-state functional MRI were performed at less than 48 weeks corrected gestational age, and rs-fMRI images were co-registered to the UNC neonate brain template and 90 anatomic atlas-labelled regions. Covariate Assisted Principal (CAP) regression was performed to identify brain network functional connectivity that was significantly different among infants with prenatal opioid exposure compared to healthy neonates.   Results: Of the 5 significantly different CAP components identified, the most distinct component (CAP5, p= 3.86 x 10-6) spanned several brain regions, including the right inferior temporal gyrus, bilateral Hesch’s gyrus, left thalamus, left supramarginal gyrus, left inferior parietal lobule, left superior parietal gyrus, right anterior cingulate gyrus, right gyrus rectus, left supplementary motor area, and left pars triangularis. Functional connectivity in this network was lower in the infants with prenatal opioid exposure compared to non-opioid exposed infants.   Conclusion: This study demonstrates global network alterations in infants with prenatal opioid exposure compared to non-opioid exposed infants. Future studies should be aimed at identifying clinical significance of this altered connectivity.


2019 ◽  
Author(s):  
Michal Ramot ◽  
Catherine Walsh ◽  
Gabrielle E. Reimann ◽  
Alex Martin

AbstractExtensive study of typically developing individuals and those on the autism spectrum has identified a large number of brain regions associated with our ability to navigate the social world. Although it is widely appreciated that this so-called ‘social brain’ is composed of distinct, interacting systems, these component parts have yet to be clearly elucidated. Here we used measures of eye movement and neural typicality – based on the degree to which subjects deviated from the norm – while typically developing (N = 62) and individuals with autism (N = 36) watched a large battery of movies depicting social interactions. Our findings provide clear evidence for distinct, but overlapping, neural systems underpinning two major components of the ‘social brain’, social orienting and inferring the mental state of others.


2020 ◽  
Author(s):  
Ortal Shimon-Raz ◽  
Roy Salomon ◽  
Miki Bloch ◽  
Gabi Aisenberg Romano ◽  
Talma Hendler ◽  
...  

AbstractReorganization of the maternal brain, primed by oxytocin surge during childbirth, triggers the species-typical maternal social behavior. These brief social moments carry profound effects on the infant’s social brain and likely have a distinct signature in the maternal brain. Utilizing a double-blind, oxytocin/placebo administration crossover design, we imaged mothers twice while observing three naturalistic maternal-infant contexts in the home ecology; “unavailable”, “unresponsive”, and “social”, when mothers engaged in synchronous pick-a-boo play. We found four processes by which mother’s brain registers social moments. Salience - social moments increased activations throughout the maternal brain network; Brain-behavior coupling - caregiving behavior linked with socially-driven neural response; Oxytocin sensitivity – administration impacted neural response mainly to the social context; and Temporal engrams–consistent temporal patterns in insula and TP characterized response to social play. Findings describe how mother’s brain compiles and amplifies these precious social moments to generate dyad-specific brain-behavior patterns that initiate the cross-generational transmission of human sociality.


2020 ◽  
Author(s):  
Hui-Ting Huang ◽  
Po-See Chen ◽  
Yu-Ming Kuo ◽  
Shun-Fen Tzeng

Abstract Background Consecutive peripheral immune challenges can modulate the responses of brain resident microglia to stimuli. High-fat diet (HFD) intake has been reported to stimulate the activation of astrocytes and microglia in the arcuate nucleus (ARC) of the hypothalamus in obese rodents and humans. However, it is unknown whether intermittent exposure to additional peripheral immune challenge can modify HFD-induced hypothalamic glial activation in obese individuals. Methods In this study, we administered 1 mg/kg LPS (or saline) by intraperitoneal (i.p.) injection to 8-week-old male mice after 1, 2, or 8 weeks of a regular diet (show) or HFD. The level of interleukin-1b (IL-1b) and tumor necrosis factor-a (TNF-a) expression in the plasma and hypothalamic tissue was analyzed 24 h after each LPS injection. The behaviors of the animals in the four groups (the chow-saline, chow-LPS, HFD-saline, and HFD-LPS groups) were examined 5 months after exposure to chow or a HFD. Morphological examination of microglia in related brain regions was also conducted. Results The plasma levels and hypothalamic mRNA levels of IL-1b and TNF-a were significantly upregulated 24 h after the first injection of LPS but not after the second or third injection of LPS. Chow-LPS mice displayed increased exploratory behavior 5 months after feeding. However, this LPS-induced exploratory behavior was inhibited in HFD-fed mice. Chronic HFD feeding for 5 months induced apparent increases in the number and cell body size of microglia, mainly in the ARC, and also increased the size of microglia in the NAc and insula. Moreover, microglial activation in the nucleus accumbens (NAc), anterior cingulate cortex (ACC), insula, and basolateral amygdala (BLA) was observed in chow-LPS mice. However, microglial activation in the analyzed brain regions was suppressed in HFD-LPS mice. Conclusions Altogether, the results indicate that intermittent peripheral challenge with LPS might prime microglia in the ARC and NAc to modify their response to chronic HFD feeding. Alternatively, chronic HFD feeding might mediate microglia in LPS-affected brain regions and subsequently suppress LPS-induced exploratory behavior. Our findings suggest that intermittent acute peripheral immune challenges and chronic HFD intake can cause microglia to modify the microenvironment and further modify animal behaviors.


2019 ◽  
Vol 28 (4) ◽  
pp. 380-386 ◽  
Author(s):  
Meghan L. Meyer

Social-neuroscience research has identified a set of medial frontoparietal brain regions that reliably engage during social cognition. At the same time, cognitive-neuroscience research has shown that these regions comprise part of the default network, so named because they reliably activate during mental breaks by default. Although the anatomical similarity between the social brain and the default brain is well documented, why this overlap exists remains a mystery. Does the tendency to engage these regions by default during rest have particular social functions, and if so, what might these be? Here, it is suggested that the default network performs two critical social functions during rest: social priming and social consolidation. These constructs will be defined, recently published empirical findings that support them will be reviewed, and directions for future research on the topic will be proposed.


Sign in / Sign up

Export Citation Format

Share Document