scholarly journals Optogenetically-Induced Population Discharge Threshold as a Sensitive Measure of Network Excitability

2019 ◽  
Author(s):  
D.C. Klorig ◽  
G.E. Alberto ◽  
T. Smith ◽  
D.W. Godwin

AbstractNetwork excitability is governed by synaptic efficacy, intrinsic excitability, and the circuitry in which these factors are expressed. The complex interplay between these factors determines how circuits function, and at the extreme, their susceptibility to seizure. We have developed a novel optogenetic intensity response procedure that provides a sensitive, quantitative estimate of network excitability. By combining optogenetic stimulation of the hippocampus with chronic multi-site recordings in peri-hippocampal structures of awake behaving mice, we induced abnormal network-wide epileptiform population discharges (PD) that were nearly indistinguishable from spontaneously occurring interictal spikes. By systematically varying light intensity, and therefore the magnitude of the optogenetically-mediated current, we generated intensity-response curves using the probability of PD as the dependent variable. This probability curve was well fit by a Boltzmann function, from which we calculated the intensity that produces a half-maximal probability of discharge (I50). This novel metric, the I50, is correlated with the optogenetic after-discharge threshold (oADT) in the same mice. Manipulations known to increase excitability, such as sub-convulsive doses (20 mg/kg) of the chemoconvulsant pentylenetetrazol (PTZ), produced a leftward shift in the curve compared to baseline. The anti-epileptic drug levetiracetam (40 mk/kg), in combination with PTZ, produced a rightward shift. Optogenetically-induced population discharge threshold (oPDT) baselines were stable over time, suggesting the metric is appropriate for within-subject experimental designs with multiple pharmacological manipulations. The oPDT is a sensitive measure of subconvulsive network excitability, with broad applicability to a number of areas of investigation.Significance StatementNetwork excitability is carefully regulated by homeostatic mechanisms in the brain in order to maintain optimal functional conditions. Abnormal excitability is associated with a number of neurological disorders including epilepsy. Excitability can be measured in single cellsin vitro, but it is difficult to extrapolate from these values to the functional impact on the network as a whole. Epileptiform discharges are network wide events that represent a distinct transition from normal to abnormal functional modes. We developed a new technique that uses light intensity-response curves to precisely determine the threshold for this transition as a surrogate measure of network excitability and seizure susceptibility.

1978 ◽  
Vol 235 (3) ◽  
pp. E324 ◽  
Author(s):  
K G Morgan ◽  
P F Schmalz ◽  
V L Go ◽  
J H Szurszewski

Intracellular microelectrode and standard organ bath techniques were used to study in vitro the effects of three molecular forms of the peptide cholecystokinin on the electrical and mechanical activities of canine antral circular muscle. Three forms were studied: the carboxyl-terminal octapeptide of cholecystokinin (CCK-OP), the molecule containing 33 amino acid residues (CCK33), and the peptide termed "cholecystokinin variant" that contains 39 amino acids (CCK39). All three forms increased the force and frequency of spontaneous contractions. They also increased the frequency and the amplitude and duration of the plateau of the gastric action potential. Atropine did not block any of these effects, suggesting that the action of these peptides was largely due to a direct action on the smooth muscle. Complete dose-response curves were determined for the effect of these peptides on the force and frequency of contraction for muscle strips and for the effect on amplitude of the plateau and frequency of the action potential for single cells. CCK39 and CCK-OP had similar potencies and both forms were more potent than CCK33.


1999 ◽  
Vol 81 (04) ◽  
pp. 605-612 ◽  
Author(s):  
Dmitry V. Sakharov ◽  
Marrie Barrett-Bergshoeff ◽  
Rob T. Hekkenberg ◽  
Dingeman C. Rijken

SummaryIn a number of cases, thrombolytic therapy fails to re-open occluded blood vessels, possibly due to the occurrence of thrombi resistant to lysis. We investigated in vitro how the lysis of hardly lysable model thrombi depends on the choice of the plasminogen activator (PA) and is accelerated by ultrasonic irradiation. Lysis of compacted crosslinked human plasma clots was measured after addition of nine different PAs to the surrounding plasma and the effect of 3 MHz ultrasound on the speed of lysis was assessed.Fibrin-specific PAs showed bell-shaped dose-response curves of varying width and height. PAs with improved fibrin-specificity (staphylokinase, the TNK variant of tissue-type PA [tPA], and the PA from the saliva of the Desmodus rotundus bat) induced rapid lysis in concentration ranges (80-, 260-, and 3,500-fold ranges, respectively) much wider than that for tPA (a 35-fold range). However, in terms of speed of lysis, these three PAs exceeded tPA only slightly. Reteplase and single-chain urokinase were comparable to tPA, whereas two-chain urokinase, anistreplase, and streptokinase were inferior to tPA. In the case of fibrin-specific PAs, ultrasonic treatment accelerated lysis about 1.5-fold. For streptokinase no acceleration was observed. The effect of ultrasound correlated with the presence of plasminogen in the outer plasma, suggesting that it was mediated by facilitating the transport of plasminogen to the surface of the clot.In conclusion, PAs with improved fibrin-specificity induce rapid lysis of plasminogen-poor compacted plasma clots in much wider concentration ranges than tPA. This offers a possibility of using single-or double-bolus administration regimens for such PAs. However, it is not likely that administration of these PAs will directly cause a dramatic increase in the rate of re-opening of the occluded arteries since they are only moderately superior to tPA in terms of maximal speed of lysis. Application of high-frequency ultrasound as an adjunct to thrombolytic therapy may increase the treatment efficiency, particularly in conjunction with fibrin-specific PAs.


1965 ◽  
Vol 50 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Jürg Müller

ABSTRACT An extract of human urine, which was previously shown to stimulate aldosterone production by rat adrenal sections, was further purified. Evidence was obtained that its aldosterone-stimulating effect was due to the presence of ammonium ions. Addition of ammonium chloride and of urine extract to the incubation medium caused identical increases in aldosterone production in vitro. In addition to ammonium ions, rubidium and caesium ions also stimulated aldosterone production up to 250% that of control values without a significant effect on corticosterone production. Similar dose-response curves were obtained when increasing concentrations of potassium, ammonium, rubidium and caesium ions were tested. Aldosterone production was maximal at concentrations of 7 mval/1 and was significantly lower at higher concentrations. When ammonium chloride and ACTH were simultaneously added to the incubation medium, the production of aldosterone and of corticosterone was lower than with ACTH alone. On the other hand, the stimulating activity on aldosterone and corticosterone production by »TPN« (NADP) and glucose-6-phosphate was enhanced by the simultaneous addition of ammonium chloride.


2021 ◽  
Vol 3 (1) ◽  
pp. 181-188
Author(s):  
Peter Bracke ◽  
Eowyn Van de Putte ◽  
Wouter R. Ryckaert

Dose-response curves for circadian phase shift and melatonin suppression in relation to white or monochromatic nighttime illumination can be scaled to melanopic weighed illumination for normally constricted pupils, which makes them easier to interpret and compare. This is helpful for a practical applications.


1997 ◽  
Vol 25 (3) ◽  
pp. 303-309
Author(s):  
Václav Mandys ◽  
Katerina Jirsová ◽  
Jirí Vrana

The neurotoxic effects of seven selected Multicenter Evaluation of In Vitro Cytotoxicity programme chemicals (methanol, ethanol, isopropanol, sodium chloride, potassium chloride, iron [II] sulphate and chloroform) were evaluated in organotypic cultures of chick embryonic dorsal root ganglia (DRG), maintained in a soft agar culture medium. Two growth parameters of neurite outgrowth from the ganglia — the mean radial length of neurites and the area of neurite outgrowth — were used to evaluate the toxicities of the chemicals. Dose-dependent decreases of both parameters were observed in all experiments. IC50 values (the concentration causing 50% inhibition of growth) were calculated from the dose-response curves established at three time-points during culture, i.e. 24, 48 and 72 hours. The lowest toxic effect was observed in cultures exposed to methanol (the IC50 ranging from 580mM to 1020mM). The highest toxic effect was observed in cultures exposed to iron (II) sulphate (the IC50 ranging from 1.2mM to 1.7mM). The results of other recent experiments suggest that organotypic cultures of DRG can be used during in vitro studies on target organ toxicity within the peripheral nervous system. Moreover, these cultures preserve the internal organisation of the tissue, maintain intercellular contacts, and thus reflect the in vitro situation, more precisely than other cell cultures.


1984 ◽  
Vol 100 (2) ◽  
pp. 219-226 ◽  
Author(s):  
S. A. Nicholson ◽  
T. E. Adrian ◽  
B. Gillham ◽  
M. T. Jones ◽  
S. R. Bloom

ABSTRACT The effect of six hypothalamic peptides on the basal release of ACTH and that induced by arginine vasopressin (AVP) or by ovine corticotrophin releasing factor (oCRF) from fragments of the rat anterior pituitary gland incubated in vitro was investigated. Dose–response curves to AVP and to oCRF were obtained, and the response to a low dose of oCRF was potentiated by a low dose of AVP. Basal release of ACTH was not affected by any of the peptides in concentrations in the range 10−12 to 10−6 mol/l, and only substance P (SP) and somatostatin (SRIF) inhibited significantly the response to oCRF in a dose-related manner. The responses to a range of doses of oCRF or AVP were reduced by 10−8 and 10 − 6 mol SP or SRIF/1, and to a greater extent by the higher dose. Except in the case of 10−6 mol SRIF/1 on the response to AVP, the response was not further diminished by preincubation of the tissue with the peptide before the stimulating agent was added. The inhibition of the responses to AVP or oCRF by 10−9 mol SP/1 was not potentiated by its combination with either 5 × 10−10 or 10−8 mol SRIF/1; the inhibitory effects were merely additive. The results suggest that although SRIF and SP are able to modulate the release of ACTH from the anterior pituitary gland, they do so only at a high concentration. In the case of SRIF these concentrations are several orders of magnitude higher than those reported to be present in the hypophysial portal blood and therefore a physiological role for this peptide in the control of ACTH secretion is unlikely. J. Endocr. (1984) 100, 219–226


2011 ◽  
Vol 89 (7) ◽  
pp. 467-476 ◽  
Author(s):  
Ji Seok Baik ◽  
Ju-Tae Sohn ◽  
Seong-Ho Ok ◽  
Jae-Gak Kim ◽  
Hui-Jin Sung ◽  
...  

Levobupivacaine is a long-acting local anesthetic that intrinsically produces vasoconstriction in isolated vessels. The goals of this study were to investigate the calcium-dependent mechanism underlying levobupivacaine-induced contraction of isolated rat aorta in vitro and to elucidate the pathway responsible for the endothelium-dependent attenuation of levobupivacaine-induced contraction. Isolated rat aortic rings were suspended to record isometric tension. Cumulative levobupivacaine concentration–response curves were generated in either the presence or absence of the antagonists verapamil, nifedipine, SKF-96365, 2-aminoethoxydiphenylborate, Gd3+, NW-nitro-l-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and methylene blue, either alone or in combination. Verapamil, nifedipine, SKF-96365, 2-aminoethoxydiphenylborate, low calcium concentrations, and calcium-free Krebs solution attenuated levobupivacaine-induced contraction. Gd3+ had no effect on levobupivacaine-induced contraction. Levobupivacaine increased intracellular calcium levels in vascular smooth muscle cells. L-NAME, ODQ, and methylene blue increased levobupivacaine-induced contraction in endothelium-intact aorta. SKF-96365 attenuated calcium-induced contraction in a previously calcium-free isotonic depolarizing solution containing 100 mmol/L KCl. Levobupivacaine-induced contraction of rat aortic smooth muscle is mediated primarily by calcium influx from the extracellular space mainly via voltage-operated calcium channels and, in part, by inositol 1,4,5-trisphosphate receptor-mediated release of calcium from the sarcoplasmic reticulum. The nitric oxide – cyclic guanosine monophosphate pathway is involved in the endothelium-dependent attenuation of levobupivacaine-induced contraction.


Sign in / Sign up

Export Citation Format

Share Document