scholarly journals Follicular regulatory T cells can access the germinal centre independently of CXCR5

2019 ◽  
Author(s):  
Ine Vanderleyden ◽  
Sigrid C. Fra-Bido ◽  
Silvia Innocentin ◽  
Hanneke Okkenhaug ◽  
Nicola Evans-Bailey ◽  
...  

SummaryThe germinal centre (GC) response is critical for generating high-affinity humoral immunity and immunological memory, which forms the basis of successful immunisation. Control of the GC response is thought to require follicular regulatory T (Tfr) cells, a subset of suppressive Foxp3+ Treg cells located within GCs. Relatively little is known about the exact role of Tfr cells within the GC, and the mechanism/s through which they exert their suppressive function. A unique feature of Tfr cells is their reported CXCR5-dependent localisation to the GC. Here we show that the lack of CXCR5 on Foxp3+ regulatory T cells resulted in a reduced frequency, but not an absence of, GC-localised Tfr cells. This demonstrates that additional, CXCR5-independent mechanisms facilitate Treg cell homing to the GC.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adriana Gutiérrez-Hoya ◽  
Rubén López-Santiago ◽  
Jorge Vela-Ojeda ◽  
Laura Montiel-Cervantes ◽  
Octavio Rodríguez-Cortés ◽  
...  

CD8+ T cells that secrete proinflammatory cytokines play a central role in exacerbation of inflammation; however, a new subpopulation of CD8 regulatory T cells has recently been characterized. This study analyzes the prominent role of these different subpopulations in the development of graft-versus-host disease (GVHD). Samples from 8 healthy donors mobilized with Filgrastim® (G-CSF) and 18 patients who underwent allogeneic hematopoietic stem cell transplantation (HSCT) were evaluated by flow cytometry. Mobilization induced an increase in Tc1 (p<0.01), Th1 (p<0.001), Tc17 (p<0.05), and CD8+IL-10+ cells (p<0.05), showing that G-CSF induces both pro- and anti-inflammatory profiles. Donor-patient correlation revealed a trend (p=0.06) toward the development of GVHD in patients who receive a high percentage of Tc1 cells. Patients with acute GVHD (aGVHD), either active or controlled, and patients without GVHD were evaluated; patients with active aGVHD had a higher percentage of Tc1 (p<0.01) and Tc17 (p<0.05) cells, as opposed to patients without GVHD in whom a higher percentage of CD8 Treg cells (p<0.01) was found. These findings indicate that the increase in Tc1 and Tc17 cells is associated with GVHD development, while regulatory CD8 T cells might have a protective role in this disease. These tests can be used to monitor and control GVHD.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2804-2804
Author(s):  
Michal Abraham ◽  
Inbal Mishalian ◽  
Abi Vainstein ◽  
Liron Shemesh-Darvish ◽  
Ella Sorani ◽  
...  

Abstract Introduction: Regulatory T (Treg) cells, an immunosuppressive subset of CD4+ T cells characterized by the expression of the master transcription factor forkhead box protein P3 (FOXP3), are a component of the immune system with essential roles in maintaining self-tolerance. Treg cells which are indispensable for preventing autoimmunity, also suppress effective tumor immunity (Togashi et al. Nat Rev Clin Oncol 2019) Treg cells abundantly infiltrate into tumor tissues, present in the tumor microenvironment where they promote tumor development and progression by dampening antitumor immune responses. The abundantly infiltrate of Treg cells into tumor tissues is often associated with poor prognosis in cancer patients (Tanaka et al Eur. J. Immunol. 2019). The chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1 (SDF-1/CXCL12) are critically involved in immune cell trafficking. CXCR4 overexpression, which has been identified in multiple cancer types, also supports cancer metastasis, recurrence and therapeutic resistance. More importantly, CXCR4 was shown to enhance tumor immune evasion by recruiting Treg (Santagata et al. Oncotarget. 2017) Objective: To study the effect of the high affinity CXCR4 antagonist, BL-8040, on the biology of Treg cells. To study how BL-8040 affects the ability of these cells to penetrate into the tumors, their migratory ability, their survival and also the differentiation of naive T cells towards Treg. Methods:C57BL/6 mice bearing LivMet pancreatic tumors and control mice were used for in-vivo study. In-vitro study was done with CD4 +CD25 hiFOXP3 + (Treg) cells which were isolated from fresh whole blood. CD4 +CD25 - cells were served as T conventional cells (Tconv). Differentiation of Treg cells was done from Naïve CD4+ T cells which were isolated from cord blood and stimulated with anti-CD3/CD28, TGF-b, IL-2 with or without BL-8040 for 6 days. Results: When mice bearing pancreatic cancer were treated with BL-8040, we found a significant reduction in the number of infiltrating Treg into the tumor. Following treatment with BL-8040 there was no alteration in the number of Treg in the blood neither in control mice nor in mice bearing tumors. To further understand the mechanism by which BL-8040 effected Treg cells we isolated Treg and Tconv cells and found that Treg cells express lower level of CXCR4, as compared to Tconv (Figure1). Further to, when we compared their motility, we found that Treg migration less efficiently towards CXCL12. Despite this, BL8040 more efficiently suppressed CXCL12 induced migration of Treg compared to Tconv. 100 nM of BL8040 was found to inhibits the migration of 82 % from the Treg compared to only 56.6% of Tconv cells (Figure 2). CXCR4 involves classical pathways of cell survival. In order to study the role of CXCR4 in the viability of Treg, we incubated Treg and Tconv cells in the presence of BL-8040 for 24 hr. We found that Treg cells are more sensitive to BL-8040 treatment with 19.2% of cell death compared to only 3.5% of Tconv cell death (Figure 3). Treg are one of the lineages of T helper (Th) cells which differentiated from naïve CD4 T cells. We found that BL-8040 inhibits the differentiation of naive CD4 T cells toward Treg. 10uM of BL-8040 shows a 5-fold inhibition in Treg differentiation from naïve CD4 T cells (Figure 4). Conclusions: In this work we show that the CXCR4 antagonist, BL-8040, can act as an immunomodulator by affecting the biology of regulatory T cells. BL8040 reduce the amount of infiltrating Treg into the tumors, impaired the migratory capacity of Treg toward CXCL12 and induces their cell death. Furthermore, BL-8040 was found to inhibit the differentiation of naïve CD4 T cells toward Treg. Taking all these together, BL-8040 may therefore improve the anticancer immune response, without impairing the activity of Tconv and thus can potentially serve as an effective immunomodulatory agent for cancer. Figure 1 Figure 1. Disclosures Abraham: Biokine Therapeutics: Current Employment. Vainstein: BioLineRx LTD: Current Employment. Shemesh-Darvish: BioLineRx LTD: Current Employment. Sorani: BioLineRx LTD: Current Employment. Eizenberg: Biokine Therapeutics Ltd: Current Employment. Peled: Biokine Therapeutics Ltd: Current Employment; Gamida Cell: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 709-709
Author(s):  
Lequn Li ◽  
Jin Sub Kim ◽  
Vassiliki A Boussiotis

Abstract Abstract 709 The differentiation and functional specialization of effector T cells allows for effective immune response to diverse insults. However, tight regulation of effector T cell responses is required for effective control of infections and avoidance of autoimmunity. Naïve CD4 T cells can differentiate into IFN-γ-secreting type I (Th1) cells and IL-4-secreting type II (Th2) cells. Recently, the Th1/Th2 paradigm of T helper (Th) cells differentiation has been expanded following the discovery of a third subset of effector Th cells that produce IL-17 (Th17). Regulatory T (Treg) cells have a remarkable ability to prevent naïve T cell differentiation into Th1 and Th2 cells and to suppress immune responses driven by Th1 and Th2 effector cells. The role of Treg cells in regulating IL-17 production remains undetermined. Some studies suggest that Treg cells may promote differentiation of naïve T cells into Th17 cells in the context of inflammatory cytokine milieu. The aim of our present study was to determine the role of Treg cells and conventional CD4+ T cells (Tconv) in the differentiation of IL-17 producing cells in the absence of exogenous cytokines and insults. Naïve Tconv cells stimulated with anti-CD3 mAb in the presence of antigen presenting cells (APCs) secreted significant amounts of IFN-γ and IL-4 but no detectable levels of IL-17, whereas Treg cells were incapable of producing any of these cytokines under the same culture conditions. Production of IFN-γ and IL-4 was significantly reduced by addition of Treg cells in the cultures of Tconv cells with anti-CD3 mAb and APC. In contrast, production of IL-17 was considerably enhanced in these co-culture conditions and the level of IL-17 displayed a positive correlation with the number of Treg cells added in the culture. To evaluate whether TCR-mediated stimulation of both Treg and Tconv cells was required for IL-17 production, we used Tconv cells and Treg cells from two different TCR transgenic mouse strains in H-2b background, 2D2 (MOG35-55-specific) and OT-II (OVA323-339-specific), respectively, and co-cultured them in the presence of APCs (H-2b). Production of IL-17 was not observed when either MOG peptide or OVA peptide alone was added in the cultures. In contrast, addition of both MOG and OVA resulted in production of IL-17, suggesting that simultaneous activation of Tconv and Treg cells was essential for induction of IL-17. To determine the source of IL-17 during co-culture of Treg and Tconv cells, we purified Treg cells from C57/B6 mice and co-cultured them with Tconv cells from the B6 congenic mouse strain B6.PL, which carry the Thy1a (Thy1.1) allele and can be easily recognized by flow cytomeric analysis using a Thy1.1-specific mAb. Detailed evaluation during co-culture revealed that a significant proportion of Thy1.1- T cells (the source of Treg) gradually downregulated expression of Foxp3 while obtaining expression of IL-17. In contrast, there was no significant change in the expression of either Foxp3 or IL-17 in the Thy1.1+ population (the source of Tconv), suggesting that Treg was the main source of IL-17 when stimulated in the presence of antigen and activated Tconv cells. Several cytokines have been implicated in the induction of IL-17, in particular, TGF-β. For this reason, we investigated the potential involvement of TGF-β in this conversion process. Addition of TGF-β to Tconv cultured with APCs and anti-CD3 mAb in the absence of Treg cells resulted in upregulation of Foxp3 but not IL-17. In contrast, addition of TGF-β neutralizing antibody to Tconv cultured with APC and anti-CD3 mAb in the presence of Treg, suppressed IL-17 production. Moreover, assessment of TGF-β signaling in Tconv and Treg cells revealed a dramatically increased level of Smad3 phosphorylation in Treg compared to Tconv cells, indicating a reduced threshold of TGF-β mediated signaling in Treg cells. Taken together, our data indicate that reciprocal interactions of Treg and Tconv cells are required for conversion of Treg into IL-17 producing cells and that TGF-β-mediated signaling is required for this process. In addition, our results provide evidence that Treg may convert into proinflammatory effectors producing IL-17, under conditions that promote Tconv differentiation into Treg cells. These observations provide a new dimension to our understanding of Treg cells functions and may have important implications in therapeutic strategies using Treg cells. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 24 (30) ◽  
pp. 3495-3505
Author(s):  
Samanta C. Funes ◽  
Miguel A. Mansilla ◽  
Gisela Canedo-Marroquín ◽  
Margarita K. Lay ◽  
Claudia A. Riedel ◽  
...  

Reducing infant mortality due to infectious diseases is one of the most important public health goals worldwide. Several approaches have been implemented to reach this goal and vaccination has been an effective strategy for reducing infant and newborn mortality. However, the immunological features of neonates and infants represent a significant barrier to the effectiveness of vaccination. Since regulatory T cells (Treg cells) are known to play an active role in contributing to various mechanisms of suppression of the immune cell function. It has been proposed that these immune cells could decrease the immunogenicity of vaccines administered in newborns and infants. In this article, we discuss the various types of Treg cells, along with their suppressing and inhibitory mechanisms, which are used by these cells in the context of infectious and immunization processes in newborns and infants.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3867-3867
Author(s):  
Dan Avi Landau ◽  
Michelle Rosenzwajg ◽  
David Saadoun ◽  
Helene Trebeden-Negre ◽  
Patrice Cacoub ◽  
...  

Abstract Background- Mixed cryoglobulinemia (MC) vasculitis is an autoimmune disorder associated with chronic hepatitis C virus (HCV) infection. We previously reported that MC vasculitis is associated with a quantitative defect of peripheral blood regulatory T cells (Tregs). We aimed to prospectively evaluate the evolution of this defect during the course of anti-viral treatment. Methods- Treg frequencies and numbers were analyzed in 131 HCV chronically infected patients (including 66 with MC vasculitis) and 20 healthy volunteers. Measurements were taken before, during and after treatment with Pegylated Interferon and Ribavirin. Findings- At baseline, patients with MC vasculitis had significantly lower frequency and number of Tregs than patients without MC vasculitis. Complete remission of MC vasculitis following anti-viral treatment was associated with a significant increase in Treg levels compared to baseline levels. In contrast, Treg levels in non- or partial-responders, which did not differ from those of complete responders at baseline, remained unchanged over the course of the study, and where significantly lower that those of complete responders. Interpretation- The strong positive correlation between clinical responses and Treg levels provides additional support for the central role of Treg cells in the pathogenesis of HCV-induced MC-vasculitis. Furthermore, it emphasizes the dual role of Treg cells in chronic HCV infection: while they may hinder viral elimination, Treg cells also have a beneficial role in limiting autoimmune tissue injury. Correlations, in MC-vasculitis patients, between CD4+CD25 high levels and response to anti-viral treatment using clinical (A+B) or laboratory (C+D) measures. CR-complete response, NR/PR-no or partial response. Correlations, in MC-vasculitis patients, between CD4+CD25 high levels and response to anti-viral treatment using clinical (A+B) or laboratory (C+D) measures. CR-complete response, NR/PR-no or partial response.


2009 ◽  
Vol 116 (8) ◽  
pp. 639-649 ◽  
Author(s):  
Richard J. Mellanby ◽  
David C. Thomas ◽  
Jonathan Lamb

There has been considerable historical interest in the concept of a specialist T-cell subset which suppresses over-zealous or inappropriate T-cell responses. However, it was not until the discovery that CD4+CD25+ T-cells had suppressive capabilities both in vitro and in vivo that this concept regained credibility and developed into one of the most active research areas in immunology today. The notion that in healthy individuals there is a subset of Treg-cells (regulatory T-cells) involved in ‘policing’ the immune system has led to the intensive exploration of the role of this subset in disease resulting in a number of studies concluding that a quantitative or qualitative decline in Treg-cells is an important part of the breakdown in self-tolerance leading to the development of autoimmune diseases. Although Treg-cells have subsequently been widely postulated to represent a potential immunotherapy option for patients with autoimmune disease, several studies of autoimmune disorders have demonstrated high numbers of Treg-cells in inflamed tissue. The present review highlights the need to consider a range of other factors which may be impairing Treg-cell function when considering the mechanisms involved in the breakdown of self-tolerance rather than focussing on intrinsic Treg-cell factors.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Rebeca Arroyo Hornero ◽  
Christos Georgiadis ◽  
Peng Hua ◽  
Dominik Trzupek ◽  
Li-Zhen He ◽  
...  

AbstractRegulatory T cells (Tregs) are critical mediators of immune homeostasis. The co-stimulatory molecule CD27 is a marker of highly suppressive Tregs, although the role of the CD27-CD70 receptor-ligand interaction in Tregs is not clear. Here we show that after prolonged in vitro stimulation, a significant proportion of human Tregs gain stable CD70 expression while losing CD27. The expression of CD70 in expanded Tregs is associated with a profound loss of regulatory function and an unusual ability to provide CD70-directed co-stimulation to TCR-activated conventional T cells. Genetic deletion of CD70 or its blockade prevents Tregs from delivering this co-stimulatory signal, thus maintaining their regulatory activity. High resolution targeted single-cell RNA sequencing of human peripheral blood confirms the presence of CD27−CD70+ Treg cells. These findings have important implications for Treg-based clinical studies where cells are expanded over extended periods in order to achieve sufficient treatment doses.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Milan Buc

Multiple sclerosis (MS) is an inflammatory disease in which the myelin sheaths around the axons of the brain and spinal cord are damaged, leading to demyelination and scarring as well as a broad spectrum of signs and symptoms. It is caused by an autoimmune response to self-antigens in a genetically susceptible individual induced by unknown environmental factors. Principal cells of the immune system that drive the immunopathological processes are T cells, especially of TH1 and TH17 subsets. However, in recent years, it was disclosed that regulatory T cells took part in, too. Subsequently, there was endeavour to develop ways how to re-establish their physiological functions. In this review, we describe known mechanisms of action, efficacy, and side-effects of contemporary and emerging MS immunotherapeutical agents on Treg cells and other cells of the immune system involved in the immunopathogenesis of the disease. Furthermore, we discuss how laboratory immunology can offer physicians its help in the diagnosis process and decisions what kind of biological therapy should be used.


Sign in / Sign up

Export Citation Format

Share Document