scholarly journals The Evolution of Fluoroquinolone-Resistance inMycobacterium tuberculosisis Modulated by the Genetic Background

2019 ◽  
Author(s):  
Rhastin A. D. Castro ◽  
Amanda Ross ◽  
Lujeko Kamwela ◽  
Miriam Reinhard ◽  
Chloé Loiseau ◽  
...  

AbstractFluoroquinolones (FQ) form the backbone in experimental treatment regimens against drug-susceptible tuberculosis. However, little is known on whether the genetic variation present in natural populations ofMycobacterium tuberculosis(Mtb) affects the evolution of FQ-resistance (FQ-R). To investigate this question, we used a set ofMtbstrains that included nine genetically distinct drug-susceptible clinical isolates, and measured their frequency of resistance to the FQ ofloxacin (OFX)in vitro. We found that theMtbgenetic background led to differences in the frequency of OFX-resistance (OFX-R) that spanned two orders of magnitude and substantially modulated the observed mutational profiles for OFX-R. Furtherin vitroassays showed that the genetic background also influenced the minimum inhibitory concentration and the fitness effect conferred by a given OFX-R mutation. To test the clinical relevance of ourin vitrowork, we surveyed the mutational profile for FQ-R in publicly available genomic sequences from clinicalMtbisolates, and found substantialMtblineage-dependent variability. Comparison of the clinical and thein vitromutational profiles for FQ-R showed that 45% and 19% of the variability in the clinical frequency of FQ-RgyrAmutations in Lineage 2 and Lineage 4 strains, respectively, can be attributed to howMtbevolves FQ-Rin vitro. As theMtbgenetic background strongly influenced the evolution of FQ-Rin vitro, we conclude that the genetic background ofMtbalso impacts the evolution of FQ-R in the clinic.SignificanceNewer generations of fluoroquinolones form the backbone in many experimental treatment regimens againstM. tuberculosis(Mtb). While the genetic variation in natural populations ofMtbcan influence resistance evolution to multiple different antibiotics, it is unclear whether it modulates fluoroquinolone-resistance evolution as well. Using a combination ofin vitroassays coupled with genomic analysis of clinical isolates, we provide the first evidence illustrating theMtbgenetic background’s substantial role in fluoroquinolone-resistance evolution, and highlight the importance of bacterial genetics when studying the prevalence of fluoroquinolone-resistance inMtb. Our work may provide insights into how to maximize the timespan in which fluoroquinolones remain effective in clinical settings, whether as part of current standardized regimens, or in new regimens againstMtb.

2019 ◽  
Vol 37 (1) ◽  
pp. 195-207 ◽  
Author(s):  
Rhastin A D Castro ◽  
Amanda Ross ◽  
Lujeko Kamwela ◽  
Miriam Reinhard ◽  
Chloé Loiseau ◽  
...  

Abstract Fluoroquinolones (FQ) form the backbone in experimental treatment regimens against drug-susceptible tuberculosis. However, little is known on whether the genetic variation present in natural populations of Mycobacterium tuberculosis (Mtb) affects the evolution of FQ-resistance (FQ-R). To investigate this question, we used nine genetically distinct drug-susceptible clinical isolates of Mtb and measured their frequency of resistance to the FQ ofloxacin (OFX) in vitro. We found that the Mtb genetic background led to differences in the frequency of OFX-resistance (OFX-R) that spanned two orders of magnitude and substantially modulated the observed mutational profiles for OFX-R. Further, in vitro assays showed that the genetic background also influenced the minimum inhibitory concentration and the fitness effect conferred by a given OFX-R mutation. To test the clinical relevance of our in vitro work, we surveyed the mutational profile for FQ-R in publicly available genomic sequences from clinical Mtb isolates, and found substantial Mtb lineage-dependent variability. Comparison of the clinical and the in vitro mutational profiles for FQ-R showed that 51% and 39% of the variability in the clinical frequency of FQ-R gyrA mutation events in Lineage 2 and Lineage 4 strains, respectively, can be attributed to how Mtb evolves FQ-R in vitro. As the Mtb genetic background strongly influenced the evolution of FQ-R in vitro, we conclude that the genetic background of Mtb also impacts the evolution of FQ-R in the clinic.


2009 ◽  
Vol 53 (6) ◽  
pp. 2463-2468 ◽  
Author(s):  
Patrizia Spigaglia ◽  
Fabrizio Barbanti ◽  
Thomas Louie ◽  
Frédéric Barbut ◽  
Paola Mastrantonio

ABSTRACT Recent studies have suggested that exposure to fluoroquinolones represents a risk factor for the development of Clostridium difficile infections and that the acquisition of resistance to the newer fluoroquinolones is the major reason facilitating wide dissemination. In particular, moxifloxacin (MX) and levofloxacin (LE) have been recently associated with outbreaks caused by the C. difficile toxinotype III/PCR ribotype 027/pulsed-field gel electrophoresis type NAP1 strain. In this study, we evaluated the potential of MX and LE in the in vitro development of fluoroquinolone resistance mediated by GyrA and GyrB alterations. Resistant mutants were obtained from five C. difficile parent strains, susceptible to MX, LE, and gatifloxacin (GA) and belonging to different toxinotypes, by selection in the presence of increasing concentrations of MX and LE. Stable mutants showing substitutions in GyrA and/or GyrB were obtained from the parent strains after selection by both antibiotics. Mutants had MICs ranging from 8 to 128 μg/ml for MX, from 8 to 256 μg/ml for LE, and from 1.5 to ≥32 μg/ml for GA. The frequency of mutation ranged from 3.8 × 10−6 to 6.6 × 10−5 for MX and from 1.0 × 10−6 to 2.4 × 10−5 for LE. In total, six different substitutions in GyrA and five in GyrB were observed in this study. The majority of these substitutions has already been described for clinical isolates or has occurred at positions known to be involved in fluoroquinolone resistance. In particular, the substitution Thr82 to Ile in GyrA, the most common found in resistant C. difficile clinical isolates, was observed after selection with LE, whereas the substitution Asp426 to Val in GyrB, recently described in toxin A-negative/toxin B-positive epidemic strains, was observed after selection with MX. Interestingly, a reduced susceptibility to fluoroquinolones was observed in colonies isolated after the first and second steps of selection by both MX and LE, with no substitution in GyrA or GyrB. The results suggest a relevant role of fluoroquinolones in the emergence and selection of fluoroquinolone-resistant C. difficile strains also in vivo.


2005 ◽  
Vol 49 (5) ◽  
pp. 1714-1719 ◽  
Author(s):  
Josep M. Sierra ◽  
Luis Martinez-Martinez ◽  
Fernando Vázquez ◽  
Ernest Giralt ◽  
Jordi Vila

ABSTRACT Quinolone susceptibility was analyzed in 17 clinical isolates of Corynebacterium striatum and 9 strains of Corynebacterium amycolatum by the E-test method in Mueller-Hinton agar plates. The C. striatum ATCC 6940 strain was used as a control strain. The amplified quinolone resistance determining regions of the gyrA genes of C. amycolatum and C. striatum were characterized. Four in vitro quinolone-resistant mutants of C. amycolatum were selected and analyzed. Both in vivo and in vitro quinolone-resistant strains of C. amycolatum showed high levels of fluoroquinolone resistance in strains with a double mutation leading to an amino acid change in positions 87 and 91 or positions 87 and 88 (unusual mutation) of GyrA, whereas the same concomitant mutations at amino acid positions 87 and 91 in GyrA of C. striatum produced high levels of resistance to ciprofloxacin and levofloxacin but only showed a moderate increase in the MIC of moxifloxacin, suggesting that other mechanism(s) of quinolone resistance could be involved in moxifloxacin resistance in C. amycolatum. Moreover, a PCR-RFLP-NcoI of the gyrA gene was developed to distinguish between C. amycolatum and C. striatum species.


2005 ◽  
Vol 187 (19) ◽  
pp. 6726-6732 ◽  
Author(s):  
Hasan Yesilkaya ◽  
Jeremy W. Dale ◽  
Norval J. C. Strachan ◽  
Ken J. Forbes

ABSTRACT Transposable elements can affect an organism's fitness through the insertional inactivation of genes and can therefore be used to identify genes that are nonessential for growth in vitro or in animal models. However, these models may not adequately represent the genetic requirements during chains of human infection. We have therefore conducted a genome-wide survey of transposon mutations in Mycobacterium tuberculosis isolates from cases of human infection, identifying the precise, base-specific insertion sites of the naturally occurring transposable element IS6110. Of 294 distinct insertions mapped to the strain H37Rv genome, 180 were intragenic, affecting 100 open reading frames. The number of genes carrying IS6110 in clinical isolates, and hence apparently not essential for infection and transmission, is very much lower than the estimates of nonessential genes derived from in vitro studies. This suggests that most genes in M. tuberculosis play a significant role in human infection chains. IS6110 insertions were underrepresented in genes associated with virulence, information pathways, lipid metabolism, and membrane proteins but overrepresented in multicopy genes of the PPE family, genes of unknown function, and intergenic sequences. Population genomic analysis of isolates recovered from an organism's natural habitat is an important tool for determining the significance of genes or classes of genes in the natural biology of an organism.


2001 ◽  
Vol 45 (12) ◽  
pp. 3517-3523 ◽  
Author(s):  
L. M. Weigel ◽  
G. J. Anderson ◽  
R. R. Facklam ◽  
F. C. Tenover

ABSTRACT Twenty-one clinical isolates of Streptococcus pneumoniae showing reduced susceptibility or resistance to fluoroquinolones were characterized by serotype, antimicrobial susceptibility, and genetic analyses of the quinolone resistance-determining regions (QRDRs) of gyrA,gyrB, parC, and parE. Five strains were resistant to three or more classes of antimicrobial agents. In susceptibility profiles for gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, ofloxacin, sparfloxacin, and trovafloxacin, 14 isolates had intermediate- or high-level resistance to all fluoroquinolones tested except gemifloxacin (no breakpoints assigned). Fluoroquinolone resistance was not associated with serotype or with resistance to other antimicrobial agents. Mutations in the QRDRs of these isolates were more heterogeneous than those previously reported for mutants selected in vitro. Eight isolates had amino acid changes at sites other than ParC/S79 and GyrA/S81; several strains contained mutations in gyrB, parE, or both loci. Contributions to fluoroquinolone resistance by individual amino acid changes, including GyrB/E474K, ParE/E474K, and ParC/A63T, were confirmed by genetic transformation of S. pneumoniae R6. Mutations in gyrB were important for resistance to gatifloxacin but not moxifloxacin, and mutation of gyrAwas associated with resistance to moxifloxacin but not gatifloxacin, suggesting differences in the drug-target interactions of the two 8-methoxyquinolones. The positions of amino acid changes within the four genes affected resistance more than did the total number of QRDR mutations. However, the effect of a specific mutation varied significantly depending on the agent tested. These data suggest that the heterogeneity of mutations will likely increase as pneumococci are exposed to novel fluoroquinolone structures, complicating the prediction of cross-resistance within this class of antimicrobial agents.


2021 ◽  
Vol 22 (22) ◽  
pp. 12218
Author(s):  
Yufeng Gu ◽  
Lulu Huang ◽  
Cuirong Wu ◽  
Junhong Huang ◽  
Haihong Hao ◽  
...  

The evolution of resistance in Salmonella to fluoroquinolones (FQs) under a broad range of sub-inhibitory concentrations (sub-MICs) has not been systematically studied. This study investigated the mechanism of resistance development in Salmonella enterica serovar Enteritidis (S. Enteritidis) under sub-MICs of 1/128×MIC to 1/2×MIC of enrofloxacin (ENR), a widely used veterinary FQ. It was shown that the resistance rate and resistance level of S. Enteritidis varied with the increase in ENR concentration and duration of selection. qRT-PCR results demonstrated that the expression of outer membrane porin (OMP) genes, ompC, ompD and ompF, were down-regulated first to rapidly adapt and develop the resistance of 4×MIC, and as the resistance level increased (≥8×MIC), the up-regulated expression of efflux pump genes, acrB, emrB amd mdfA, along with mutations in quinolone resistance-determining region (QRDR) gradually played a decisive role. Cytohubba analysis based on transcriptomic profiles demonstrated that purB, purC, purD, purF, purH, purK, purL, purM, purN and purT were the hub genes for the FQs resistance. The ‘de novo’ IMP biosynthetic process, purine ribonucleoside monophosphate biosynthetic process and purine ribonucleotide biosynthetic process were the top three biological processes screened by MCODE. This study first described the dynamics of FQ resistance evolution in Salmonella under a long-term selection of sub-MICs of ENR in vitro. In addition, this work offers greater insight into the transcriptome changes of S. Enteritidis under the selection of ENR and provides a framework for FQs resistance of Salmonella for further studies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peng Lan ◽  
Dongdong Zhao ◽  
Jiong Gu ◽  
Qiucheng Shi ◽  
Rushuang Yan ◽  
...  

Hypervirulent Klebsiella pneumoniae (hvKP) has raised grave concerns in recent years and can cause severe infections with diverse anatomic locations including liver abscess, meningitis, and endophthalmitis. However, there is limited data about neck abscess caused by hvKP. A K. pneumoniae strain Kp_whw was isolated from neck abscess. We characterized the genetic background, virulence determinates of the strain by genomic analysis and dertermined the virulence level by serum resistance assay. Kp_whw belonged to sequence type (ST) 1049 K locus (KL) 5. Kp_whw showed hypermucoviscosity phenotype and was resistant to ampicillin but susceptible to the majority of the other antimicrobial agents. A pLVPK-like virulence plasmid and a chromosomal ICEKp5-like mobile genetic element were carried by Kp_whw, resulting in the risk of dissemination of hypervirulence. The strain exhibited relative higher level of core genome allelic diversity than accessory genome profile, in comparison to hvKP of K1/K2 serotype. Kp_whw was finally demonstrated as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in vitro. In conclusion, this work elaborates the genetic background of a clinical hvKP strain with an uncommon ST, reinforcing our understanding of virulence mechanisms of hvKP.


2018 ◽  
Author(s):  
Martin Kapun ◽  
Maite G. Barrón ◽  
Fabian Staubach ◽  
Darren J. Obbard ◽  
R. Axel W. Wiberg ◽  
...  

AbstractGenetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatio-temporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterise variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


Author(s):  
Arnaud Magallon ◽  
Mathilde Roussel ◽  
Catherine Neuwirth ◽  
Jennifer Tetu ◽  
Anne-Charlotte Cheiakh ◽  
...  

Abstract Background Achromobacter are emerging pathogens in cystic fibrosis patients. Mechanisms of resistance to fluoroquinolones are unknown in clinical isolates. Among non-fermenting Gram-negative bacilli, fluoroquinolone resistance is mostly due to amino acid substitutions in localized regions of the targets (GyrA, GyrB, ParC and ParE) named QRDRs, but also to efflux. Objectives To explore quinolone resistance mechanisms in Achromobacter. Methods The putative QRDRs of GyrA, GyrB, ParC and ParE were sequenced in 62 clinical isolates, and in vitro one-step mutants obtained after exposure to fluoroquinolones. An in vitro mutant and its parental isolate were investigated by RNASeq and WGS. RT–qPCR and gene inactivation were used to explore the role of efflux systems overexpression. Results We detected seven substitutions in QRDRs (Q83L/S84P/D87N/D87G for GyrA, Q480P for GyrB, T395A/K525Q for ParE), all in nine of the 27 clinical isolates with ciprofloxacin MIC ≥16 mg/L, whereas none among the in vitro mutants. The RND efflux system AxyEF-OprN was overproduced (about 150-fold) in the in vitro mutant NCF-39-Bl6 versus its parental strain NCF-39 (ciprofloxacin MICs 64 and 1.5 mg/L, respectively). A substitution in AxyT (putative regulator of AxyEF-OprN) was detected in NCF-39-Bl6. Ciprofloxacin MIC in NCF-39-Bl6 dropped from 64 to 1.5 mg/L following gene inactivation of either axyT or axyF. Substitutions in AxyT associated with overexpression of AxyEF-OprN were also detected in seven clinical strains with ciprofloxacin MIC ≥16 mg/L. Conclusions Target alteration is not the primary mechanism involved in fluoroquinolone resistance in Achromobacter. The role of AxyEF-OprN overproduction was demonstrated in one in vitro mutant.


Sign in / Sign up

Export Citation Format

Share Document