scholarly journals Distinct Contribution of DNA Methylation and Histone Acetylation to the Genomic Occupancy of Transcription Factors

2019 ◽  
Author(s):  
Martin Cusack ◽  
Hamish W. King ◽  
Paolo Spingardi ◽  
Benedikt M. Kessler ◽  
Robert J. Klose ◽  
...  

AbstractEpigenetic modifications on chromatin play important roles in regulating gene expression. While chromatin states are often governed by multi-layered structure, how individual pathways contribute to gene expression remains poorly understood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are integrated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. Interestingly, we observe widespread increases in chromatin accessibility at repeat elements when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements have elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced additive effect of HDAC inhibition in DNA methylation deficient cells demonstrate that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.

Blood ◽  
2013 ◽  
Vol 121 (1) ◽  
pp. 178-187 ◽  
Author(s):  
Till Schoofs ◽  
Christian Rohde ◽  
Katja Hebestreit ◽  
Hans-Ulrich Klein ◽  
Stefanie Göllner ◽  
...  

Abstract The origin of aberrant DNA methylation in cancer remains largely unknown. In the present study, we elucidated the DNA methylome in primary acute promyelocytic leukemia (APL) and the role of promyelocytic leukemia–retinoic acid receptor α (PML-RARα) in establishing these patterns. Cells from APL patients showed increased genome-wide DNA methylation with higher variability than healthy CD34+ cells, promyelocytes, and remission BM cells. A core set of differentially methylated regions in APL was identified. Age at diagnosis, Sanz score, and Flt3-mutation status characterized methylation subtypes. Transcription factor–binding sites (eg, the c-myc–binding sites) were associated with low methylation. However, SUZ12- and REST-binding sites identified in embryonic stem cells were preferentially DNA hypermethylated in APL cells. Unexpectedly, PML-RARα–binding sites were also protected from aberrant DNA methylation in APL cells. Consistent with this, myeloid cells from preleukemic PML-RARα knock-in mice did not show altered DNA methylation and the expression of PML-RARα in hematopoietic progenitor cells prevented differentiation without affecting DNA methylation. Treatment of APL blasts with all-trans retinoic acid also did not result in immediate DNA methylation changes. The results of the present study suggest that aberrant DNA methylation is associated with leukemia phenotype but is not required for PML-RARα–mediated initiation of leukemogenesis.


2020 ◽  
Author(s):  
Hye Kyung Lee ◽  
Chengyu Liu ◽  
Lothar Hennighausen

AbstractEnhancers are transcription factor platforms that synergize with promoters to activate gene expression up to several-thousand-fold. While genome-wide structural studies are used to predict enhancers, the in vivo significance is less clear. Specifically, the biological importance of individual transcription factors within enhancer complexes remains to be understood. Here we investigate the structural and biological importance of individual transcription factor binding sites and redundancy among transcription components within a complex enhancer in vivo. The Csn1s2b gene is expressed exclusively in mammary tissue and activated several thousand-fold during pregnancy and lactation. Using ChIP-seq we identified a complex lactation-specific candidate enhancer that binds multiple transcription factors and coincides with activating histone marks. Using experimental mouse genetics, we determined that deletion of canonical binding motifs for the transcription factors NFIB and STAT5, individually and combined, had a limited biological impact. Loss of these sites led to a shift of transcription factor binding to juxtaposed sites, suggesting exceptional plasticity that does not require direct protein-DNA interactions. Additional deletions revealed the critical importance of a non-canonical STAT5 binding site for enhancer activity. Our data also suggest that enhancer RNAs are not required for the activity of this specific enhancer. While ChIP-seq experiments predicted an additional candidate intronic enhancer, its deletion did not adversely affect gene expression, emphasizing the limited biological information provided by structural data. Our study provides comprehensive insight into the anatomy and biology of a composite mammary enhancer that activates its target gene several hundred-fold during lactation.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Lianggang Huang ◽  
Xuejie Li ◽  
Liangbo Dong ◽  
Bin Wang ◽  
Li Pan

Abstract Background The identification of open chromatin regions and transcription factor binding sites (TFBs) is an important step in understanding the regulation of gene expression in diverse species. ATAC-seq is a technique used for such purpose by providing high-resolution measurements of chromatin accessibility revealed through integration of Tn5 transposase. However, the existence of cell walls in filamentous fungi and associated difficulty in purifying nuclei have precluded the routine application of this technique, leading to a lack of experimentally determined and computationally inferred data on the identity of genome-wide cis-regulatory elements (CREs) and TFBs. In this study, we constructed an ATAC-seq platform suitable for filamentous fungi and generated ATAC-seq libraries of Aspergillus niger and Aspergillus oryzae grown under a variety of conditions. Results We applied the ATAC-seq assay for filamentous fungi to delineate the syntenic orthologue and differentially changed chromatin accessibility regions among different Aspergillus species, during different culture conditions, and among specific TF-deleted strains. The syntenic orthologues of accessible regions were responsible for the conservative functions across Aspergillus species, while regions differentially changed between culture conditions and TFs mutants drove differential gene expression programs. Importantly, we suggest criteria to determine TFBs through the analysis of unbalanced cleavage of distinct TF-bound DNA strands by Tn5 transposase. Based on this criterion, we constructed data libraries of the in vivo genomic footprint of A. niger under distinct conditions, and generated a database of novel transcription factor binding motifs through comparison of footprints in TF-deleted strains. Furthermore, we validated the novel TFBs in vivo through an artificial synthetic minimal promoter system. Conclusions We characterized the chromatin accessibility regions of filamentous fungi species, and identified a complete TFBs map by ATAC-seq, which provides valuable data for future analyses of transcriptional regulation in filamentous fungi.


2014 ◽  
Author(s):  
Nicholas E. Banovich ◽  
Xun Lan ◽  
Graham McVicker ◽  
Bryce van de Geijn ◽  
Jacob F. Degner ◽  
...  

AbstractDNA methylation is an important epigenetic regulator of gene expression. Recent studies have revealed widespread associations between genetic variation and methylation levels. However, the mechanistic links between genetic variation and methylation remain unclear. To begin addressing this gap, we collected methylation data at ∼300,000 loci in lymphoblastoid cell lines (LCLs) from 64 HapMap Yoruba individuals, and genome-wide bisulfite sequence data in ten of these individuals. We identified (at an FDR of 10%) 13,915 cis methylation QTLs (meQTLs)—i.e., CpG sites in which changes in DNA methylation are associated with genetic variation at proximal loci. We found that meQTLs are frequently associated with changes in methylation at multiple CpGs across regions of up to 3 kb. Interestingly, meQTLs are also frequently associated with variation in other properties of gene regulation, including histone modifications, DNase I accessibility, chromatin accessibility, and expression levels of nearby genes. These observations suggest that genetic variants may lead to coordinated molecular changes in all of these regulatory phenotypes. One plausible driver of coordinated changes in different regulatory mechanisms is variation in transcription factor (TF) binding. Indeed, we found that SNPs that change predicted TF binding affinities are significantly enriched for associations with DNA methylation at nearby CpGs.Author SummaryDNA methylation is an important epigenetic mark that contributes to many biological processes including the regulation of gene expression. Genetic variation has been associated with quantitative changes in DNA methylation (meQTLs). We identified thousands of meQTLs using an assay that allowed us to measure methylation levels at around 300 thousand cytosines. We found that meQTLs are enriched with loci that is also associated with quantitative changes in gene expression, DNase I hypersensitivity, PolII occupancy, and a number of histone marks. This suggests that many molecular events are likely regulated in concert. Finally, we found that changes in transcription factor binding as well as transcription factor abundance are associated with changes in DNA methylation near transcription factor binding sites. This work contributes to our understanding of the regulation of DNA methylation in the larger context of gene regulatory landscape.


2020 ◽  
Vol 117 (26) ◽  
pp. 15075-15084 ◽  
Author(s):  
J. B. Gurdon ◽  
Khayam Javed ◽  
Munender Vodnala ◽  
Nigel Garrett

Some lineage-determining transcription factors are overwhelmingly important in directing embryonic cells to a particular differentiation pathway, such asAscl1for nerve. They also have an exceptionally strong ability to force cells to change from an unrelated pathway to one preferred by their action. Transcription factors are believed to have a very short residence time of only a few seconds on their specific DNA or chromatin-binding sites. We have developed a procedure in which DNA containing one copy of the binding site for the neural-inducing factorAscl1is injected directly into aXenopusoocyte nucleus which has been preloaded with a limiting amount of theAscl1transcription factor protein. This is followed by a further injection of DNA as a competitor, either in a plasmid or in chromosomal DNA, containing the same binding site but with a different reporter. Importantly, expression of the reporter provides a measure of the function of the transcription factor in addition to its residence time. The same long residence time and resistance to competition are seen with the estrogen receptor and its DNA response elements. We find that in this nondividing oocyte, the nerve-inducing factorAscl1can remain bound to a specific chromatin site for hours or days and thereby help to stabilize gene expression. This stability of transcription factor binding to chromatin is a necessary part of its action because removal of this factor causes discontinuation of its effect on gene expression. Stable transcription factor binding may be a characteristic of nondividing cells.


2021 ◽  
Author(s):  
Carlos A. Villarroel ◽  
Paulo Canessa ◽  
Macarena Bastias ◽  
Francisco A Cubillos

Saccharomyces cerevisiae rewires its transcriptional output to survive stressful environments, such as nitrogen scarcity under fermentative conditions. Although divergence in nitrogen metabolism has been described among natural yeast populations, the impact of regulatory genetic variants modulating gene expression and nitrogen consumption remains to be investigated. Here, we employed an F1 hybrid from two contrasting S. cerevisiae strains, providing a controlled genetic environment to map cis factors involved in the divergence of gene expression regulation in response to nitrogen scarcity. We used a dual approach to obtain genome-wide allele-specific profiles of chromatin accessibility, transcription factor binding, and gene expression through ATAC-seq and RNA-seq. We observed large variability in allele-specific expression and accessibility between the two genetic backgrounds, with a third of these differences specific to a deficient nitrogen environment. Furthermore, we discovered events of allelic bias in gene expression correlating with allelic bias in transcription factor binding solely under nitrogen scarcity, where the majority of these transcription factors orchestrates the Nitrogen Catabolite Repression regulatory pathway and demonstrates a cis x environment-specific response. Our approach allowed us to find cis variants modulating gene expression, chromatin accessibility and allelic differences in transcription factor binding in response to low nitrogen culture conditions.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Mahmoud Ahmed ◽  
Do Sik Min ◽  
Deok Ryong Kim

Abstract Background Transcription factor binding to the regulatory region of a gene induces or represses its gene expression. Transcription factors share their binding sites with other factors, co-factors and/or DNA-binding proteins. These proteins form complexes which bind to the DNA as one-units. The binding of two factors to a shared site does not always lead to a functional interaction. Results We propose a method to predict the combined functions of two factors using comparable binding and expression data (target). We based this method on binding and expression target analysis (BETA), which we re-implemented in R and extended for this purpose. target ranks the factor’s targets by importance and predicts the dominant type of interaction between two transcription factors. We applied the method to simulated and real datasets of transcription factor-binding sites and gene expression under perturbation of factors. We found that Yin Yang 1 transcription factor (YY1) and YY2 have antagonistic and independent regulatory targets in HeLa cells, but they may cooperate on a few shared targets. Conclusion We developed an R package and a web application to integrate binding (ChIP-seq) and expression (microarrays or RNA-seq) data to determine the cooperative or competitive combined function of two transcription factors.


2014 ◽  
Vol 42 (15) ◽  
pp. 9753-9760 ◽  
Author(s):  
Cai Chen ◽  
Ralf Bundschuh

Abstract Binding of transcription factors to their binding sites in promoter regions is the fundamental event in transcriptional gene regulation. When a transcription factor binding site is located within a nucleosome, the DNA has to partially unwrap from the nucleosome to allow transcription factor binding. This reduces the rate of transcription factor binding and is a known mechanism for regulation of gene expression via chromatin structure. Recently a second mechanism has been reported where transcription factor off-rates are dramatically increased when binding to target sites within the nucleosome. There are two possible explanations for such an increase in off-rate short of an active role of the nucleosome in pushing the transcription factor off the DNA: (i) for dimeric transcription factors the nucleosome can change the equilibrium between monomeric and dimeric binding or (ii) the nucleosome can change the equilibrium between specific and non-specific binding to the DNA. We explicitly model both scenarios and find that dimeric binding can explain a large increase in off-rate while the non-specific binding model cannot be reconciled with the large, experimentally observed increase. Our results suggest a general mechanism how nucleosomes increase transcription factor dissociation to promote exchange of transcription factors and regulate gene expression.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Guohua Wang ◽  
Fang Wang ◽  
Qian Huang ◽  
Yu Li ◽  
Yunlong Liu ◽  
...  

Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.


Sign in / Sign up

Export Citation Format

Share Document