scholarly journals Stable and widespread structural heteroplasmy in chloroplast genomes revealed by a new long-read quantification method

2019 ◽  
Author(s):  
Weiwen Wang ◽  
Robert Lanfear

AbstractThe chloroplast genome usually has a quadripartite structure consisting of a large single copy region and a small single copy region separated by two long inverted repeats. It has been known for some time that a single cell may contain at least two structural haplotypes of this structure, which differ in the relative orientation of the single copy regions. However, the methods required to detect and measure the abundance of the structural haplotypes are labour-intensive, and this phenomenon remains understudied. Here we develop a new method, Cp-hap, to detect all possible structural haplotypes of chloroplast genomes of quadripartite structure using long-read sequencing data. We use this method to conduct a systematic analysis and quantification of chloroplast structural haplotypes in 61 land plant species across 19 orders of Angiosperms, Gymnosperms and Pteridophytes. Our results show that there are two chloroplast structural haplotypes which occur with equal frequency in most land plant individuals. Nevertheless, species whose chloroplast genomes lack inverted repeats or have short inverted repeats have just a single structural haplotype. We also show that the relative abundance of the two structural haplotypes remains constant across multiple samples from a single individual plant, suggesting that the process which maintains equal frequency of the two haplotypes operates rapidly, consistent with the hypothesis that flip-flop recombination mediates chloroplast structural heteroplasmy. Our results suggest that previous claims of differences in chloroplast genome structure between species may need to be revisited.Significance StatementChloroplast genome consists of a large single copy region, a small single copy region, and two inverted repeats. Some decades ago, a discovery showed that there are two types chloroplast genome in some plants, which differ the way that the four regions are put together. However, this phenomenon has been shown in just a small number of species, and many open questions remain. Here, we develop a fast method to measure the chloroplast genome structures, based on long-reads. We show that almost all plants we analysed contain two possible genome structures, while a few plants contain only one structure. Our findings hint at the causes of the phenomenon, and provide a convenient new method with which to make rapid progress.

Author(s):  
Weiwen Wang ◽  
Robert Lanfear

Abstract The chloroplast genome usually has a quadripartite structure consisting of a large single copy region and a small single copy region separated by two long inverted repeats. It has been known for some time that a single cell may contain at least two structural haplotypes of this structure, which differ in the relative orientation of the single copy regions. However, the methods required to detect and measure the abundance of the structural haplotypes are labour-intensive, and this phenomenon remains understudied. Here we develop a new method, Cp-hap, to detect all possible structural haplotypes of chloroplast genomes of quadripartite structure using long-read sequencing data. We use this method to conduct a systematic analysis and quantification of chloroplast structural haplotypes in 61 land plant species across 19 orders of Angiosperms, Gymnosperms and Pteridophytes. Our results show that there are two chloroplast structural haplotypes which occur with equal frequency in most land plant individuals. Nevertheless, species whose chloroplast genomes lack inverted repeats or have short inverted repeats have just a single structural haplotype. We also show that the relative abundance of the two structural haplotypes remains constant across multiple samples from a single individual plant, suggesting that the process which maintains equal frequency of the two haplotypes operates rapidly, consistent with the hypothesis that flip-flop recombination mediates chloroplast structural heteroplasmy. Our results suggest that previous claims of differences in chloroplast genome structure between species may need to be revisited.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Bagdevi Mishra ◽  
Bartosz Ulaszewski ◽  
Sebastian Ploch ◽  
Jaroslaw Burczyk ◽  
Marco Thines

Chloroplasts are difficult to assemble because of the presence of large inverted repeats. At the same time, correct assemblies are important, as chloroplast loci are frequently used for biogeography and population genetics studies. In an attempt to elucidate the orientation of the single-copy regions and to find suitable loci for chloroplast single nucleotide polymorphism (SNP)-based studies, circular chloroplast sequences for the ultra-centenary reference individual of European Beech (Fagus sylvatica), Bhaga, and an additional Polish individual (named Jamy) was obtained based on hybrid assemblies. The chloroplast genome of Bhaga was 158,458 bp, and that of Jamy was 158,462 bp long. Using long-read mapping on the configuration inferred in this study and the one suggested in a previous study, we found an inverted orientation of the small single-copy region. The chloroplast genome of Bhaga and of the individual from Poland both have only two mismatches as well as three and two indels as compared to the previously published genome, respectively. The low divergence suggests low seed dispersal but high pollen dispersal. However, once chloroplast genomes become available from Pleistocene refugia, where a high degree of variation has been reported, they might prove useful for tracing the migration history of Fagus sylvatica in the Holocene.


2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Yang ◽  
Gao-Fei Fu ◽  
Zhi-Qiang Wu ◽  
Li Li ◽  
Jian-Li Zhao ◽  
...  

Chloroplasts are critical to plant survival and adaptive evolution. The comparison of chloroplast genomes could provide insight into the adaptive evolution of closely related species. To identify potential adaptive evolution in the chloroplast genomes of four montane Zingiberaceae taxa (Cautleya, Roscoea, Rhynchanthus, and Pommereschea) that inhabit distinct habitats in the mountains of Yunnan, China, the nucleotide sequences of 13 complete chloroplast genomes, including five newly sequenced species, were characterized and compared. The five newly sequenced chloroplast genomes (162,878–163,831 bp) possessed typical quadripartite structures, which included a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted repeat regions (IRa and IRb), and even though the structure was highly conserved among the 13 taxa, one of the rps19 genes was absent in Cautleya, possibly due to expansion of the LSC region. Positive selection of rpoA and ycf2 suggests that these montane species have experienced adaptive evolution to habitats with different sunlight intensities and that adaptation related to the chloroplast genome has played an important role in the evolution of Zingiberaceae taxa.


2021 ◽  
Vol 38 ◽  
pp. 00107
Author(s):  
Tahir Samigullin ◽  
Carmen Vallejo-Roman ◽  
Galina Degtjareva ◽  
Elena Terentieva

Apiaceae belong to angiosperm families with frequent plastome structural rearrangements, some of which are generally regarded as synapomorphic for large clades, although typically with limited taxon sampling. Our study aims to improve understanding of the structural rearrangements in plastome within the Tordylieae tribe (ApiaceaeApioideae) with a dense sampling scheme of its species. We showed that presence of psbA pseudogene in inverted repeats near the border with a large single-copy region, which is found in the Tordylieae tribe, may be a clade-specific synapomorphy.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6032 ◽  
Author(s):  
Zhenyu Zhao ◽  
Xin Wang ◽  
Yi Yu ◽  
Subo Yuan ◽  
Dan Jiang ◽  
...  

Dioscorea L., the largest genus of the family Dioscoreaceae with over 600 species, is not only an important food but also a medicinal plant. The identification and classification of Dioscorea L. is a rather difficult task. In this study, we sequenced five Dioscorea chloroplast genomes, and analyzed with four other chloroplast genomes of Dioscorea species from GenBank. The Dioscorea chloroplast genomes displayed the typical quadripartite structure of angiosperms, which consisted of a pair of inverted repeats separated by a large single-copy region, and a small single-copy region. The location and distribution of repeat sequences and microsatellites were determined, and the rapidly evolving chloroplast genome regions (trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, ndhF, trnL-rpl32, and ycf1) were detected. Phylogenetic relationships of Dioscorea inferred from chloroplast genomes obtained high support even in shortest internodes. Thus, chloroplast genome sequences provide potential molecular markers and genomic resources for phylogeny and species identification.


Author(s):  
Matias Köhler ◽  
Marcelo Reginato ◽  
Tatiana T. Souza-Chies ◽  
Lucas C. Majure

AbstractChloroplast genomes (plastomes) are frequently treated as highly conserved among land plants. However, many lineages of vascular plants have experienced extensive structural rearrangements, including inversions and modifications to the size and content of genes. Cacti are one of these lineages, containing the smallest plastome known for an obligately photosynthetic angiosperm, including the loss of one copy of the inverted repeat (∼25 kb) and the ndh genes suite, but only a few cacti from the subfamily Cactoideae have been sufficiently characterized. Here, we investigated the variation of plastome sequences across the second-major lineage of the Cactaceae, the subfamily Opuntioideae, to address 1) how variable is the content and arrangement of chloroplast genome sequences across the subfamily, and 2) how phylogenetically informative are the plastome sequences for resolving major relationships among the clades of Opuntioideae. Our de novo assembly of the Opuntia quimilo plastome recovered an organelle of 150,347 bp in length with both copies of the inverted repeats and the presence of all the ndh genes suite. An expansion of the large single copy unit and a reduction of the small single copy was observed, including translocations and inversion of genes as well as the putative pseudogenization of numerous loci. Comparative analyses among all clades within Opuntioideae suggested that plastome structure and content vary across taxa of this subfamily, with putative independent losses of the ndh gene suite and pseudogenization of genes across disparate lineages, further demonstrating the dynamic nature of plastomes in Cactaceae. Our plastome dataset was robust in determining relationships among major clades and subclades within Opuntioideae, resolving three tribes with high support: Cylindropuntieae, Tephrocacteae and Opuntieae. A plastome-wide survey for highly informative phylogenetic markers revealed previously unused regions for future use in Sanger-based studies, presenting a valuable dataset with primers designed for continued evolutionary studies across Cactaceae. These results bring new insights into the evolution of plastomes in cacti, suggesting that further analyses should be carried out to address how ecological drivers, physiological constraints and morphological traits of cacti may be related with the common rearrangements in plastomes that have been reported across the family.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kyu Tae Park ◽  
SeonJoo Park

Hepatica is a small genus of Ranunculaceae with medicinal and horticultural value. We characterized nine complete chloroplast (cp) genomes of Hepatica, which ranged from 159,549 to 161,081 bp in length and had a typical quadripartite structure with a large single-copy region (LSC; 80,270–81,249 bp), a small single-copy region (SSC; 17,029–17,838 bp), and two copies of inverted repeat (IR; 31,008–31,100 bp). The cp genomes of Hepatica possess 76 protein-coding genes (PCGs), 29 tRNAs, and four rRNA genes. Comparative analyses revealed a conserved ca. 5-kb IR expansion in Hepatica and other Anemoneae; moreover, multiple inversion events occurred in Hepatica and its relatives. Analyses of selection pressure (dN/dS) showed that most of the PCGs are highly conserved except for rpl20 and rpl22 in Hepatica falconeri, Hepatica americana, and Hepatica acutiloba. Two genes (rps16 and infA) were identified as pseudogenes in Hepatica. In contrast, rpl32 gene was completely lost. The phylogenetic analyses based on 76 PCGs resolved the phylogeny of Hepatica and its related genera. Non-monophyly of Anemone s.l. indicates that Hepatica should be reclassified as an independent genus. In addition, Hepatica nobilis var. japonica is not closely related to H. nobilis.


Sign in / Sign up

Export Citation Format

Share Document