scholarly journals The effects of biodegradable mulch film on the growth, yield, and water use efficiency of cotton and maize in an arid region

2019 ◽  
Author(s):  
Lu Deng ◽  
Ruide Yu ◽  
Qian Wang

AbstractPlastic residual film pollution in China is serious, and the use of degradable mulch film instead of plastic mulch can effectively alleviate this situation. The substitution of common polyethylene plastic mulch film with biodegradable mulch film in the agricultural production of cotton and maize in an arid region was investigated in the present study. Using bare soil as the control, we compared the effects of common polyethylene plastic film and biodegradable mulch film on crop growth, yield, and water use efficiency (WUE) in maize and cotton. The results indicated that: (1) the biodegradable mulch film in this region remained intact for 60 days after being laid down, significantly degrading after 120 days, and was associated with increased soil temperature, moisture conservation, and degradability in comparison to a bare soil control. (2) Both the biodegradable mulch film and the polyethylene plastic film significantly increased various physiological parameters, such as crop height, stalk diameter, and leaf area. (3) The biodegradable mulch film significantly increased maize and cotton crop yield by 69.4–76.2% and 65.2–71.9%, respectively, compared to the bare soil control. (4) Compared to the bare soil control, the biodegradable mulch film effectively increased WUE in the crops by 64.5–73.1%. In summary, biodegradable mulch film had comparable results to the common polyethylene plastic film in increasing soil temperature, moisture conservation, crop growth, yield, and WUE. As the biodegradable mulch film causes no residual pollution, it is thus preferable to common plastic mulch film for agricultural applications in arid regions and supports the sustainable development of agroecosystems.

2019 ◽  
Vol 11 (24) ◽  
pp. 7039 ◽  
Author(s):  
Lu Deng ◽  
Yang Yu ◽  
Haiyan Zhang ◽  
Qian Wang ◽  
Ruide Yu

Plastic residual film pollution in China is severe, and the use of degradable mulch film instead of plastic mulch can effectively alleviate this situation. The substitution of common polyethylene plastic mulch film with biodegradable mulch film in the agricultural production of cotton and maize in an arid region was investigated in the present study. Using bare soil as the control, we compared the effects of common polyethylene plastic film and biodegradable mulch film on crop growth, yield, and water use efficiency (WUE) in maize and cotton. The results indicated that: (1) the biodegradable mulch film in this region remained intact for 60 days after being laid down, significantly degrading after 120 days, and was associated with increased soil temperature, moisture conservation, and degradability in comparison to a bare soil control; (2) Both the biodegradable mulch film and the polyethylene plastic film significantly increased various physiological parameters, such as crop height, stalk diameter, and leaf area; (3) The biodegradable mulch film had a significant effect on crop yield by 69.4–76.2% and 65.2–71.9%, respectively, compared to the bare soil control. (4) Compared to the bare soil control, the biodegradable mulch film effectively increased WUE in the crops by 64.5–73.1%. In summary, biodegradable mulch film had comparable results to the common polyethylene plastic film in increasing crop growth, yield, and WUE. As the biodegradable mulch film causes no residual pollution, it is thus preferable to common plastic mulch film for agricultural applications in arid regions and supports the sustainable development of agroecosystems. Therefore, the use of degradable mulch films in agricultural production is more environmentally friendly and more conducive to the sustainable development of agricultural systems.


2021 ◽  
Vol 39 (3) ◽  
pp. 330-334
Author(s):  
Agnaldo Roberto de J Freitas ◽  
Francisco Claudio L de Freitas ◽  
Caetano Marciano de Souza ◽  
Fabio T Delazari ◽  
Paulo Geraldo Berger ◽  
...  

ABSTRACT Vegetable cultivation requires high water use and weed control. Soil cover using recycled paper, can be an alternative to polyethylene film to reduce weed incidence, soil temperature and increase water use efficiency beyond reduces costs and environmental pollutions. The objective of this study was to evaluate the use of biodegradable mulch in weed management and water use efficiency (WUE) in lettuce crop. The treatments were composed of brown recycled paper (RP), black polyethylene film (PF) and soil without cover with weed removal (WR) and without weed removal (WW). RP and PF were efficient to control weeds. The soil temperature with RP was 8.2 and 2.1ºC lower than with PF and WR, respectively. The lettuce yield with RP was 14.5 and 28.3% higher than WR, and with PF, respectively. The water volume applied with RP was 26.5% lower, and WUE was 55.6% higher compared to WR. Soil cover with recycled paper controlled weeds, reduced soil temperature and water consumption and increased yield and water use efficiency in lettuce crop.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1819
Author(s):  
Lu Deng ◽  
Xianyong Meng ◽  
Ruide Yu ◽  
Qian Wang

Plastic mulch film is widely used in agricultural production. However, there are very few studies on degradable mulch film. In order to investigate the effects of using degradable mulch film in arid regions on crop yield and water use efficiency, we used fully biodegradable mulch films on both maize and bare land cultivation experimental areas. The DeNitrification-DeComposition (DNDC) model was used to analyze changes in maize biomass in the future under different climate scenario models. We found that using fully biodegradable mulch film in an arid region had a positive effect on biomass yields. In 2015–2017, the annual maize biomass yield increased by 24.5%, 28.9%, and 32.9%, respectively. Hence, this method has expansion and promotion value. A comparison of the DNDC model simulated biomass yields and actual measured values found that the ranges of R2, root mean square error (RMSE), and model efficiency (ME) were 0.98–0.99, 0.38–0.86 mg C ha−1, and 0.80–0.98. This result shows that the DNDC model can accurately simulate changes in maize biomass in this region. Under the premise of a good model fit, future climate scenario model data were used to drive the DNDC model. The results showed that the possible range of maize biomass yields in the future is −6.5% to 10.3%, with the most probable range being 0.2–1.5%. Using future climatic conditions, our work suggests that degradable mulch films can increase water use efficiency by an average of 9.5%. The results of this study can be used to promote the use of degradable mulch films in arid regions, significantly improving sustainable agricultural development.


2018 ◽  
Vol 57 (9) ◽  
pp. 2071-2089 ◽  
Author(s):  
Sha Lu ◽  
Hongchao Zuo

AbstractPlastic mulch is a technology used worldwide to inhibit soil evaporation and increase crop yield. The properties of plastic film are significantly different from those of the soil. Plastic mulch not only significantly alters the physical attributes of the underlying surface, but also blocks the energy and mass exchanges between the land surface and the atmosphere. This latter situation has not been depicted in current land-surface models. This study develops a detailed new model, known as CoLM-mulch, by incorporating a plastic mulch–layer submodel and a dynamic parameterization scheme of surface albedo into the Common Land Model (CoLM) land-surface process model. The updated model elements are based on data collected from an experiment that examined land–atmosphere interaction at a plastic-film-covered cropland site in an arid region of northwestern China. Results suggest that the improved CoLM-mulch could reasonably simulate the diurnal variations of soil temperature and moisture, together with radiation, water, heat, and carbon dioxide (CO2) fluxes, on the cropland underlying a surface with a plastic film covering. The CoLM-mulch efficiency is higher, the deviations between the simulations and observations are minor, and the dynamic parameterization scheme for surface albedo is more reasonable and appropriate. Relative to CoLM simulations, the inclusion of plastic mulch with special optical properties in the model shows slight improvements in the simulations of the surface albedo and the radiation balance. By limiting the underlying soil evaporation and changing the aerodynamic resistances, plastic mulch in the model has influences on the turbulent exchanges between the atmosphere and the land surface. The soil temperature and moisture are improved by the inclusion of transparent plastic mulch in the model, which not only suppresses the CO2 generated by soil respiration, but also alters the CO2 exchange process between the canopy and the atmosphere as a result of the vegetation net assimilation controlled by the soil water and heat conditions.


Author(s):  
Getachew Amare ◽  
Bizuayehu Desta

AbstractMulches are materials applied in a soil surface for different roles and purposes. Plastic mulches with different colour have been developed and utilized in different crop production systems. Using coloured plastic mulches is mainly focused in modifying the radiation budget and decreasing the soil water loss. Besides, it helps to regulate soil temperature, water use efficiency, plant growth, yield, quality and weed and insect infestation. In this review, the knowledge and possible application of coloured plastic mulches, which can improve the soil physical properties, growth, yield, and quality crops has been reviewed and discussed. The role of coloured plastic mulches to mitigate the harmful effect of environmental stress in crops is also examined. Various physicochemical processes leading to improved crop production under the effect of coloured plastic mulches are also discussed. The combined results indicated that, effect of coloured plastic mulches is highly significant on soil temperature, moisture and water holding capacity. While black and blue plastics increase soil temperature, clear and white decreases it. Higher number of fruits, number of roots, tubers and bulbs was recorded in use of coloured plastic mulches. Similarly, the TSS, Vitamin C and juice percentage of different plants also showed significant improvement. It is also reported that weed infestation and viral diseases is highly reduced. Coloured plastic mulches also have some negative impacts like, decrease growth and yield in some plants, increase pest infestation, microplastics contamination, soil puddling, soil structural loss and reduce activity of soil-microorganisms. Therefore, use of coloured plastic mulches require close inspection of interaction with factors like; cropping season, root zone temperature, crop type, insect pest infestation and water use efficiency factors.


Sign in / Sign up

Export Citation Format

Share Document