scholarly journals DeepC: Predicting chromatin interactions using megabase scaled deep neural networks and transfer learning

2019 ◽  
Author(s):  
Ron Schwessinger ◽  
Matthew Gosden ◽  
Damien Downes ◽  
Richard Brown ◽  
Jelena Telenius ◽  
...  

AbstractUnderstanding 3D genome structure requires high throughput, genome-wide approaches. However, assays for all vs. all chromatin interaction mapping are expensive and time consuming, which severely restricts their usage for large-scale mutagenesis screens or for mapping the impact of sequence variants. Computational models sophisticated enough to grasp the determinants of chromatin folding provide a unique window into the functional determinants of 3D genome structure as well as the effects of genome variation.A chromatin interaction predictor should work at the base pair level but also incorporate large-scale genomic context to simultaneously capture the large scale and intricate structures of chromatin architecture. Similarly, to be a flexible and generalisable approach it should also be applicable to data it has not been explicitly trained on. To develop a model with these properties, we designed a deep neuronal network (deepC) that utilizes transfer learning to accurately predict chromatin interactions from DNA sequence at megabase scale. The model generalizes well to unseen chromosomes and works across cell types, Hi-C data resolutions and a range of sequencing depths. DeepC integrates DNA sequence context on an unprecedented scale, bridging the different levels of resolution from base pairs to TADs. We demonstrate how this model allows us to investigate sequence determinants of chromatin folding at genome-wide scale and to predict the importance of regulatory elements and the impact of sequence variations.

2021 ◽  
Author(s):  
Noha Osman ◽  
Abd-El-Monsif Shawky ◽  
Michal Brylinski

Abstract Background: Numerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging.Results: In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants.Conclusions: Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.


2017 ◽  
Author(s):  
Yanli Wang ◽  
Bo Zhang ◽  
Lijun Zhang ◽  
Lin An ◽  
Jie Xu ◽  
...  

ABSTRACTRecent advent of 3C-based technologies such as Hi-C and ChIA-PET provides us an opportunity to explore chromatin interactions and 3D genome organization in an unprecedented scale and resolution. However, it remains a challenge to visualize chromatin interaction data due to its size and complexity. Here, we introduce the 3D Genome Browser (http://3dgenome.org), which allows users to conveniently explore both publicly available and their own chromatin interaction data. Users can also seamlessly integrate other “omics” data sets, such as ChIP-Seq and RNA-Seq for the same genomic region, to gain a complete view of both regulatory landscape and 3D genome structure for any given gene. Finally, our browser provides multiple methods to link distal cis-regulatory elements with their potential target genes, including virtual 4C, ChIA-PET, Capture Hi-C and cross-cell-type correlation of proximal and distal DNA hypersensitive sites, and therefore represents a valuable resource for the study of gene regulation in mammalian genomes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jacob T. Sanders ◽  
Trevor F. Freeman ◽  
Yang Xu ◽  
Rosela Golloshi ◽  
Mary A. Stallard ◽  
...  

AbstractThe three-dimensional structure of chromosomes plays an important role in gene expression regulation and also influences the repair of radiation-induced DNA damage. Genomic aberrations that disrupt chromosome spatial domains can lead to diseases including cancer, but how the 3D genome structure responds to DNA damage is poorly understood. Here, we investigate the impact of DNA damage response and repair on 3D genome folding using Hi-C experiments on wild type cells and ataxia telangiectasia mutated (ATM) patient cells. We irradiate fibroblasts, lymphoblasts, and ATM-deficient fibroblasts with 5 Gy X-rays and perform Hi-C at 30 minutes, 24 hours, or 5 days after irradiation. We observe that 3D genome changes after irradiation are cell type-specific, with lymphoblastoid cells generally showing more contact changes than irradiated fibroblasts. However, all tested repair-proficient cell types exhibit an increased segregation of topologically associating domains (TADs). This TAD boundary strengthening after irradiation is not observed in ATM deficient fibroblasts and may indicate the presence of a mechanism to protect 3D genome structure integrity during DNA damage repair.


2020 ◽  
Author(s):  
Tejaswi Iyyanki ◽  
Baozhen Zhang ◽  
Qiushi Jin ◽  
Hongbo Yang ◽  
Tingting Liu ◽  
...  

AbstractMuscle-invasive bladder cancers have recently been characterized by their distinct expression of luminal and basal genes, which could be used to predict key clinical features such as disease progression and overall survival. For example, FOXA1, GATA3, and PPARG have been shown to be essential for luminal subtype-specific regulation and subtype switching, while TP63 and STAT3 are critical for basal subtype bladder cancer. Despite these advances, the underlying epigenetic mechanism and 3D chromatin architecture for subtype-specific regulation in bladder cancers remains largely unknown. Here, we determined the genome-wide transcriptome, enhancer landscape, TF binding profiles (FOXA1 and GATA3) in luminal and basal subtypes of bladder cancers. Furthermore, we mapped genome-wide chromatin interactions by Hi-C in both bladder cancer cell lines and primary patient tumors, for the first time in bladder cancer. We showed that subtype-specific transcription is accompanied by specific open chromatin and epigenomic marks, at least partially driven by distinct TF binding at distal-enhancers of luminal and basal bladder cancers. Finally, we identified a novel clinically relevant transcriptional factor, Neuronal PAS Domain Protein 2 (NPAS2), in luminal bladder cancers that regulates other luminal-specific genes (such as FOXA1, GATA3, and PPARG) and affects cancer cell proliferation and migration. In summary, our work shows a subtype-specific epigenomic and 3D genome structure in urinary bladder cancers and suggested a novel link between the circadian TF NPAS2 and a clinical bladder cancer subtype.


2020 ◽  
Author(s):  
Noha Osman ◽  
Michal Brylinski

AbstractNumerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.


2019 ◽  
Author(s):  
Jacob T. Sanders ◽  
Trevor F. Freeman ◽  
Yang Xu ◽  
Rosela Golloshi ◽  
Mary A. Stallard ◽  
...  

ABSTRACTThe three-dimensional structure of chromosomes plays an important role in gene expression regulation and also influences the repair of radiation-induced DNA damage. Genomic aberrations that disrupt chromosome spatial domains can lead to diseases including cancer, but how the 3D genome structure responds to DNA damage is poorly understood. Here, we investigate the impact of DNA damage response and repair on 3D genome folding using Hi-C experiments on wild type cells and ataxia telangiectasia mutated (ATM) patient cells. Fibroblasts, lymphoblasts, and ATM-deficient fibroblasts were irradiated with 5 Gy X-rays and Hi-C was performed after 30 minutes, 24 hours, or 5 days after irradiation. 3D genome changes after irradiation were cell type-specific, with lymphoblastoid cells generally showing more contact changes than irradiated fibroblasts. However, all tested repair-proficient cell types exhibited an increased segregation of topologically associating domains (TADs). This TAD boundary strengthening after irradiation was not observed in ATM deficient fibroblasts and may indicate the presence of a mechanism to protect 3D genome structure integrity during DNA damage repair.


2019 ◽  
Author(s):  
Yang Xu ◽  
Tongye Shen ◽  
Rachel Patton McCord

AbstractBackground3D genome structure contributes to the establishment or maintenance of cell identity in part by organizing genes into spatial active or inactive compartments. Less is known about how compartment switching occurs across different cell types. Rather than analyze individual A/B compartment switches between pairs of cell types, here, we seek to identify coordinated changes in groups of compartment-scale interactions across a spectrum of cell types.ResultsTo characterize the impact of genome folding on cell identity, we integrated 35 Hi-C datasets with 125 DNase-seq, 244 RNA-seq, and 893 ChIP-seq datasets. We first find physical associations with the nuclear lamina inform the most dramatic changes in chromosome structure across cell types. By examining variations in chromosome structure, transcription, and chromatin accessibility, we further observe that certain sets of correlated chromosome structure contacts also co-vary in transcription and chromatin accessibility. Analyzing ChIP-seq signals, we find that sets of chromosome contacts that form and break in sync tend to share active or suppressive histone marks. Finally, we observe that similar principles appear to govern chromosome structure fluctuations across single cells as were found across cell types.ConclusionOur results suggest that cells adapt their chromosome structures, guided by variable associations with the lamina and histone marks, to allocate up-regulatory or down-regulatory resources to certain regions and achieve transcription and chromatin accessibility variation. Our study shows E-PCA can identify the major variable interaction sets within populations of single cells, across broad categories of normal cell types, and between cancer and non-cancerous cell types.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tejaswi Iyyanki ◽  
Baozhen Zhang ◽  
Qixuan Wang ◽  
Ye Hou ◽  
Qiushi Jin ◽  
...  

Abstract Muscle-invasive bladder cancers are characterized by their distinct expression of luminal and basal genes, which could be used to predict key clinical features such as disease progression and overall survival. Transcriptionally, FOXA1, GATA3, and PPARG are shown to be essential for luminal subtype-specific gene regulation and subtype switching, while TP63, STAT3, and TFAP2 family members are critical for regulation of basal subtype-specific genes. Despite these advances, the underlying epigenetic mechanisms and 3D chromatin architecture responsible for subtype-specific regulation in bladder cancer remain unknown. Result We determine the genome-wide transcriptome, enhancer landscape, and transcription factor binding profiles of FOXA1 and GATA3 in luminal and basal subtypes of bladder cancer. Furthermore, we report the first-ever mapping of genome-wide chromatin interactions by Hi-C in both bladder cancer cell lines and primary patient tumors. We show that subtype-specific transcription is accompanied by specific open chromatin and epigenomic marks, at least partially driven by distinct transcription factor binding at distal enhancers of luminal and basal bladder cancers. Finally, we identify a novel clinically relevant transcription factor, Neuronal PAS Domain Protein 2 (NPAS2), in luminal bladder cancers that regulates other subtype-specific genes and influences cancer cell proliferation and migration. Conclusion In summary, our work identifies unique epigenomic signatures and 3D genome structures in luminal and basal urinary bladder cancers and suggests a novel link between the circadian transcription factor NPAS2 and a clinical bladder cancer subtype.


2020 ◽  
Vol 49 (D1) ◽  
pp. D38-D46
Author(s):  
Kyukwang Kim ◽  
Insu Jang ◽  
Mooyoung Kim ◽  
Jinhyuk Choi ◽  
Min-Seo Kim ◽  
...  

Abstract Three-dimensional (3D) genome organization is tightly coupled with gene regulation in various biological processes and diseases. In cancer, various types of large-scale genomic rearrangements can disrupt the 3D genome, leading to oncogenic gene expression. However, unraveling the pathogenicity of the 3D cancer genome remains a challenge since closer examinations have been greatly limited due to the lack of appropriate tools specialized for disorganized higher-order chromatin structure. Here, we updated a 3D-genome Interaction Viewer and database named 3DIV by uniformly processing ∼230 billion raw Hi-C reads to expand our contents to the 3D cancer genome. The updates of 3DIV are listed as follows: (i) the collection of 401 samples including 220 cancer cell line/tumor Hi-C data, 153 normal cell line/tissue Hi-C data, and 28 promoter capture Hi-C data, (ii) the live interactive manipulation of the 3D cancer genome to simulate the impact of structural variations and (iii) the reconstruction of Hi-C contact maps by user-defined chromosome order to investigate the 3D genome of the complex genomic rearrangement. In summary, the updated 3DIV will be the most comprehensive resource to explore the gene regulatory effects of both the normal and cancer 3D genome. ‘3DIV’ is freely available at http://3div.kr.


2021 ◽  
Author(s):  
Masae Ohno ◽  
Tadashi Ando ◽  
David G. Priest ◽  
Yuichi Taniguchi

Sign in / Sign up

Export Citation Format

Share Document