scholarly journals AANAT1 functions in astrocytes to regulate sleep homeostasis

2019 ◽  
Author(s):  
Sejal Davla ◽  
Gregory Artiushin ◽  
Daryan Chitsaz ◽  
Sally Li ◽  
Amita Sehgal ◽  
...  

SummaryCharacteristic features of sleep are conserved among species [1], and from humans to insects sleep is influenced by neural circuits involving monoamines such as serotonin and dopamine [2]. Glial cells have been increasingly implicated in mechanisms of baseline and homeostatic sleep regulation in mammals and flies [3–11], but it remains unknown whether and how glia might influence monoaminergic control of sleep. Sleep is regulated by circadian rhythms and a homeostatic drive to compensate for prolonged wakefulness, and growing evidence suggests that neural mechanisms controlling homeostatic sleep can be discriminated from those controlling baseline sleep [12–15]. In Drosophila, mutants of arylalkylamine N-acetyltransferase 1 (AANAT1lo) have normal baseline amounts of sleep and motor activity, but increased rebound sleep following deprivation [16]. AANAT1 can acetylate and inactivate monoamines in vitro [17], but the role of AANAT1 in vivo remains poorly understood. We find AANAT1 to be expressed in astrocytes and subsets of neurons in the adult Drosophila brain, with levels in astrocytes declining markedly overnight. In sleep-deprived AANAT1 mutant flies, heightened rebound sleep is accompanied by increased serotonin and dopamine levels in the brain. In neurons, AANAT1 functions to limit the quantity and consolidation of nighttime sleep, but in astrocytes AANAT1 constrains the amount of rebound sleep that flies take in response to sleep deprivation. These findings distinguish sleep-control functions of AANAT1 in neurons and astrocytes, and identify a critical role for astrocytes in the regulation of monoamine bioavailability and calibration of the response to sleep need.HighlightsThe monoamine catabolic enzyme arylalkylamine N-acetyltransferase 1 (AANAT1) is expressed by astrocytes and subsets of serotonergic, glutamatergic, GABAergic and cholinergic neurons in the adult brain of Drosophila.AANAT1 limits accumulation of serotonin and dopamine in the brain upon sleep deprivation.Loss of AANAT1 from astrocytes, but not from neurons, causes flies to increase their daytime rebound sleep in response to overnight sleep deprivation.

2000 ◽  
Vol 279 (4) ◽  
pp. H2006-H2012 ◽  
Author(s):  
Kazuhide Ayajiki ◽  
Toshiki Tanaka ◽  
Tomio Okamura ◽  
Noboru Toda

In anesthetized monkeys, electrical stimulation (ES) of the pterygopalatine or geniculate ganglion dilated the ipsilateral ophthalmic artery (OA). The induced vasodilatation was unaffected by phentolamine but potentiated by atropine. Intravenous N G-nitro-l-arginine (l-NNA) abolished the response, which was restored byl-arginine. Hexamethonium-abolished vasodilator responses induced solely by geniculate ganglionic stimulation. Thel-NNA constricted OA; l-arginine reversed the effect. Destruction of the pterygopalatine ganglion constricted the ipsilateral artery. Helical strips of OA isolated under deep anesthesia from monkeys, denuded of endothelium, responded to transmural ES with relaxations, which were abolished by tetrodotoxin and l-NNA but were potentiated by atropine. It is concluded that neurogenic vasodilatation of monkey OA is mediated by nerve-derived nitric oxide (NO), and the nerve is originated from the ipsilateral pterygopalatine ganglion that is innervated by cholinergic neurons from the brain stem via the geniculate ganglion. The OA appears to be dilated by mediation of NO continuously liberated from nerves that receive tonic discharges from the vasomotor center. Acetylcholine liberated from postganglionic cholinergic nerves would impair the release of neurogenic NO.


2004 ◽  
pp. 731-736 ◽  
Author(s):  
LM Seoane ◽  
SA Tovar ◽  
D Perez ◽  
F Mallo ◽  
M Lopez ◽  
...  

BACKGROUND/AIMS: Orexins (OXs) are a newly described family of hypothalamic neuropeptides. Based on the distribution of OX neurons and their receptors in the brain, it has been postulated that they could play a role in the regulation of neuroendocrine function. GH secretion is markedly influenced by nutritional status and body weight. To investigate the role OX-A plays in the neuroregulation of GH secretion we have studied its effect on spontaneous GH secretion as well as GH responses to GHRH and ghrelin in freely moving rats. Finally, we also assessed the effect of OX-A on in vitro GH secretion. METHODS: We administered OX-A (10 microg, i.c.v.) or vehicle (10 microl, i.c.v.) to freely moving rats. Spontaneous GH secretion was assessed over 6 h with blood samples taken every 15 min. RESULTS: Administration of OX-A led to a decrease in spontaneous GH secretion in comparison with vehicle-treated rats, as assessed by mean GH levels (means+/-s.e.m. 4.2+/-1.7 ng/ml vs 9.4+/-2.2 ng/ml; P<0.05), mean GH amplitude (3.6+/-0.5 ng/ml vs 20.8+/-5.6 ng/ml; P<0.01) and area under the curve (848+/-379 ng/ml per 4 h vs 1957+/-458 ng/ml per 4 h; P<0.05). In contrast, OX-A failed to modify in vivo GH responses to GHRH (10 microg/kg, i.v.) although it markedly blunted GH responses to ghrelin (40 microg/kg, i.v.) (mean peak GH levels: 331+/-71 ng/ml, vehicle, vs 43+/-11 ng/ml in OX-A-treated rats; P<0.01). Finally, OX-A infusion (10(-7), 10(-8) or 10(-9) M) failed to modify in vitro basal GH secretion or GH responses to GHRH, ghrelin and KCl. CONCLUSIONS: These data indicate that OX-A plays an inhibitory role in GH secretion and may act as a bridge among the regulatory signals that are involved in the control of growth, nutritional status and sleep regulation.


1997 ◽  
Vol 41 (4) ◽  
pp. 802-807 ◽  
Author(s):  
R Mazzolla ◽  
R Barluzzi ◽  
A Brozzetti ◽  
J R Boelaert ◽  
T Luna ◽  
...  

Although the pathogenesis of cerebral cryptococcosis is poorly understood, local immune cells, such as microglia and astrocytes, likely play a critical role in containing infection. Chloroquine (CQ) is a weak base that accumulates within acidic vacuoles and increases their pH. Consequently, proteolytic activity of lysosomal enzymes and intracellular iron release/availability are impaired, resulting in decreased availability of nutrients crucial to microorganism survival and growth in the host. We found that CQ enhances BV2 microglial-cell-mediated anticryptococcal activity in vitro. The phenomenon is (i) evident when both unopsonized and opsonized microorganisms are used and (ii) mimicked by NH4Cl, another weak base, and by bafilomycin A1, an inhibitor of vacuolar-type H+-ATPases. In vivo, intracerebral administration of CQ before lethal local challenge with Cryptococcus neoformans results in a significant augmentation of median survival time and a marked reduction of yeast growth in the brain and is associated with the enhancement of local interleukin 1beta (IL-1beta) and IL-6 mRNA transcripts. Overall, these results provide the first evidence that CQ enhances anticryptococcal host defenses.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Hossam Kadry ◽  
Behnam Noorani ◽  
Luca Cucullo

AbstractThe blood–brain barrier is playing a critical role in controlling the influx and efflux of biological substances essential for the brain’s metabolic activity as well as neuronal function. Thus, the functional and structural integrity of the BBB is pivotal to maintain the homeostasis of the brain microenvironment. The different cells and structures contributing to developing this barrier are summarized along with the different functions that BBB plays at the brain–blood interface. We also explained the role of shear stress in maintaining BBB integrity. Furthermore, we elaborated on the clinical aspects that correlate between BBB disruption and different neurological and pathological conditions. Finally, we discussed several biomarkers that can help to assess the BBB permeability and integrity in-vitro or in-vivo and briefly explain their advantages and disadvantages.


2018 ◽  
Vol 115 (8) ◽  
pp. E1886-E1895 ◽  
Author(s):  
Juhee Haam ◽  
Jingheng Zhou ◽  
Guohong Cui ◽  
Jerrel L. Yakel

Neuromodulation of neural networks, whereby a selected circuit is regulated by a particular modulator, plays a critical role in learning and memory. Among neuromodulators, acetylcholine (ACh) plays a critical role in hippocampus-dependent memory and has been shown to modulate neuronal circuits in the hippocampus. However, it has remained unknown how ACh modulates hippocampal output. Here, using in vitro and in vivo approaches, we show that ACh, by activating oriens lacunosum moleculare (OLM) interneurons and therefore augmenting the negative-feedback regulation to the CA1 pyramidal neurons, suppresses the circuit from the hippocampal area CA1 to the deep-layer entorhinal cortex (EC). We also demonstrate, using mouse behavior studies, that the ablation of OLM interneurons specifically impairs hippocampus-dependent but not hippocampus-independent learning. These data suggest that ACh plays an important role in regulating hippocampal output to the EC by activating OLM interneurons, which is critical for the formation of hippocampus-dependent memory.


2021 ◽  
Author(s):  
Maria L Cotrina ◽  
Wei Sun ◽  
Michael Chen ◽  
Adam J Guenzel ◽  
José Zhagnay ◽  
...  

ABSTRACTPropionic acidemia (PA) is an inborn error of metabolism (IEM) caused by mutations in the enzyme propionyl CoA carboxylase (PCC). It is characterized by the inability to break down branched chain amino acids and odd chain fatty acids, causing a buildup of toxic organic acids in blood. PA affects every organ in the body with particularly severe manifestations in the brain, like hyperammonemia, hypomyelination, seizures, cognitive impairments, optic nerve atrophy and autism spectrum disorders. Dietary management and liver transplantation have helped to ameliorate the acute expression of the disorder, but do not prevent the chronic toxicity that builds up in brain. Despite the severe brain manifestation of the disease, little is known about the mechanisms by which PA affects the nervous system.PCCA and PCCB, the two subunits required for a functional PCC enzyme, are both expressed not only in neurons but also in astrocytes. Using the two rodent genetic models of PA currently available, with mutations in PCCA, we have evaluated the involvement of astrocytes in the neuropathology of propionic acidemia. These mice exhibit cardiac pathology and hyperammonemia, similar to what is observed in patients with PA.We found that wild type (wt) astrocytes positively respond to treatment with L-Carnitine, a therapeutic approach commonly used in patients with PA, by improved survival and more efficient mitochondrial morphology. Transcriptome analysis from astrocytes derived from the wt or the mutant mice confirm that these astrocytes lack exons 3 and 4 like in the human mutations of PA. However, no other genes/exons were statistically significant with regards to differential expression between astrocytes derived from KO or from WT animals, suggesting that astrocytes in culture may be able to compensate the PCC deficiency.Histological analysis of neuronal and glial markers during brain development (TUJ1, MAP2 for neurons; nestin and Iba1 for glia) do not show significant alterations neither in distribution nor numbers of cells in the developing brain of the PCCA-/- mice. Analysis in the adult brain of mutant mice shows some variable degree of microgliosis but no indication of reactive astrocytes. No gross abnormalities were observed in cortex, hippocampus, striatum or cerebellum of adult brains of PCCA-/- mice, either.In summary, astrocytes from PCCA deficient mice show surprisingly little alterations both in vitro and in vivo. Our results evidence the need to further understand the effects of PA in brain cells to help develop potential new therapies that can preserve brain function in children affected by this devastating disease.HIGHLIGHTSAstrocytes detoxify ammonia in brain and may be affected by propionic acidemia, a disorder that causes hyperammonemia in brain.RNA seq of astrocytes in culture derived from PCCA mutant mice does not show effect in these cells.In vivo analysis of glial and neuronal cells also shows no difference in development or adult mutant miceAstrocytes may not be an adequate target of clinical therapies in this disorder


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Viviana Ulloa ◽  
Natalia Saldivia ◽  
Luciano Ferrada ◽  
Katterine Salazar ◽  
Fernando Martínez ◽  
...  

Abstract Vitamin C is incorporated into the cerebrospinal fluid (CSF) through choroid plexus cells. While the transfer of vitamin C from the blood to the brain has been studied functionally, the vitamin C transporter, SVCT2, has not been detected in the basolateral membrane of choroid plexus cells. Furthermore, it is unknown how its expression is induced in the developing brain and modulated in scurvy conditions. We concluded that SVCT2 is intensely expressed in the second half of embryonic brain development and postnatal stages. In postnatal and adult brain, SVCT2 is highly expressed in all choroidal plexus epithelial cells, shown by colocalization with GLUT1 in the basolateral membranes and without MCT1 colocalization, which is expressed in the apical membrane. We confirmed that choroid plexus explant cells (in vitro) form a sealed epithelial structure, which polarized basolaterally, endogenous or overexpressed SVCT2. These results are reproduced in vivo by injecting hSVCT2wt-EYFP lentivirus into the CSF. Overexpressed SVCT2 incorporates AA (intraperitoneally injected) from the blood to the CSF. Finally, we observed in Guinea pig brain under scorbutic condition, that normal distribution of SVCT2 in choroid plexus may be regulated by peripheral concentrations of vitamin C. Additionally, we observed that SVCT2 polarization also depends on the metabolic stage of the choroid plexus cells.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rita Matta ◽  
Seyoung Lee ◽  
Nafiisha Genet ◽  
Karen K. Hirschi ◽  
Jean-Leon Thomas ◽  
...  

AbstractStem cell therapies demonstrate promising results as treatment for neurological disease and injury, owing to their innate ability to enhance endogenous neural tissue repair and promote functional recovery. However, delivery of undifferentiated and viable neuronal stem cells requires an engineered delivery system that promotes integration of transplanted cells into the inflamed and cytotoxic region of damaged tissue. Within the brain, endothelial cells (EC) of the subventricular zone play a critical role in neural stem cell (NSC) maintenance, quiescence and survival. Therefore, here, we describe the use of polyethylene glycol microbeads for the coincident delivery of EC and NSC as a means of enhancing appropriate NSC quiescence and survival during transplantation into the mouse brain. We demonstrate that EC and NSC co-encapsulation maintained NSC quiescence, enhanced NSC viability, and facilitated NSC extravasation in vitro, as compared to NSC encapsulated alone. In addition, co-encapsulated cells delivered to an in vivo non-injury model reduced inflammatory response compared to freely injected NSC. These results suggest the strong potential of a biomimetic engineered niche for NSC delivery into the brain following neurological injury.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


1964 ◽  
Vol 47 (3_Suppl) ◽  
pp. S28-S36
Author(s):  
Kailash N. Agarwal
Keyword(s):  

ABSTRACT Red cells were incubated in vitro with sulfhydryl inhibitors and Rhantibody with and without prior incubation with prednisolone-hemisuccinate. These erythrocytes were labelled with Cr51 and P32 and their disappearance in vivo after autotransfusion was measured. Prior incubation with prednisolone-hemisuccinate had no effect on the rate of red cell disappearance. The disappearance of the cells was shown to take place without appreciable intravascular destruction.


Sign in / Sign up

Export Citation Format

Share Document