scholarly journals Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics

2019 ◽  
Author(s):  
Wen-Biao Jiao ◽  
Korbinian Schneeberger

AbstractWe report chromosome-level, reference-quality assemblies of seven Arabidopsis thaliana accessions selected across the global range of this predominately ruderal plant. Each genome revealed between 13-17 Mb rearranged and 5-6 Mb novel sequence introducing copy-number changes in ∼5,000 genes, including ∼1,900 genes which are not part of the current reference annotation. Analyzing the collinearity between the genomes revealed ∼350 regions (4.1% of the euchromatin) where accession-specific tandem duplications destroyed the syntenic gene order between the genomes. These hotspots of rearrangements were characterized by the loss of meiotic recombination in hybrids within these regions and the enrichment of genes implicated in biotic stress response. Together this suggests that hotspots of rearrangements are governed by altered evolutionary dynamics as compared to the rest of the genome, which are based on new mutations and not on the recombination of existing variation, and thereby enable a quick response to the ever-evolving challenges of biotic stress.


Author(s):  
Liam F Spurr ◽  
Mehdi Touat ◽  
Alison M Taylor ◽  
Adrian M Dubuc ◽  
Juliann Shih ◽  
...  

Abstract Summary The expansion of targeted panel sequencing efforts has created opportunities for large-scale genomic analysis, but tools for copy-number quantification on panel data are lacking. We introduce ASCETS, a method for the efficient quantitation of arm and chromosome-level copy-number changes from targeted sequencing data. Availability and implementation ASCETS is implemented in R and is freely available to non-commercial users on GitHub: https://github.com/beroukhim-lab/ascets, along with detailed documentation. Supplementary information Supplementary data are available at Bioinformatics online.



2017 ◽  
Author(s):  
Mahul Chakraborty ◽  
Roy Zhao ◽  
Xinwen Zhang ◽  
Shannon Kalsow ◽  
J.J. Emerson

AbstractMutations that add, subtract, rearrange, or otherwise refashion genome structure often affect phenotypes, though the fragmented nature of most contemporary assemblies obscure them. To discover such mutations, we assembled the first reference quality genome of Drosophila melanogaster since its initial sequencing. By comparing this genome to the existing D. melanogaster assembly, we create a structural variant map of unprecedented resolution, revealing extensive genetic variation that has remained hidden until now. Many of these variants constitute strong candidates underlying phenotypic variation, including tandem duplications and a transposable element insertion that dramatically amplifies the expression of detoxification genes associated with nicotine resistance. The abundance of important genetic variation that still evades discovery highlights how crucial high quality references are to deciphering phenotypes.



1970 ◽  
Vol 16 (1) ◽  
pp. 79-93 ◽  
Author(s):  
J. L. Azevedo ◽  
J. A. Roper

SUMMARYStrains ofAspergillus nidulanswith, a duplicate chromosome segment are mitotically unstable; in addition to phenotypically improved variants, arising following deletions in either duplicate segment, they give morphologically deteriorated types, some with, enhanced stability. In one isolate, deterioration and increased instability were determined by mutation in a duplicate segment; a more stable derivative no longer had this mutation but had one in another linkage group. Another variant, too unstable for analysis, gave derivatives whose single, new mutations were in different linkage groups. It is proposed that deterioration and increased instability result from tandem duplications on either duplicate segment; transposition of these to non-duplicated regions reduces instability. Another 17 variants had a single new mutation each; mutations, possibly clustered, occurred in all linkage groups. In these strains perhaps transposition preceded analysis. Deteriorated variants gave lineages of types with morphological changes caused by further, superimposed mutations. This continued instability is explained as interaction, in fidelity of replication, of non-homologous chromosome segments.Instability inA. nidulansstems from chromosome imbalance. As imbalance is known or suspected in other cases of instability it may be possible to show common mechanisms for apparently diverse phenomena.



2019 ◽  
Author(s):  
Jesse Lerner ◽  
Michael Manhart ◽  
Weronika Jasinska ◽  
Louis Gauthier ◽  
Adrian W.R. Serohijos ◽  
...  

Evolutionary dynamics in large asexual populations is strongly influenced by multiple competing beneficial lineages, most of which segregate at very low frequencies. However, technical barriers to tracking a large number of these rare lineages have so far prevented a detailed elucidation of evolutionary dynamics in large bacterial populations. Here, we overcome this hurdle by developing a chromosomal barcoding technique that allows simultaneous tracking of ∼450,000 distinct lineages in E. coli. We used this technique to gather insights into the evolutionary dynamics of large (>107 cells) E. coli populations propagated for ∼420 generations in the presence of sub-inhibitory concentrations of common antibiotics. By deep sequencing the barcodes, we reconstructed trajectories of individual lineages at high frequency resolution (< 10−5). Using quantitative tools from ecology, we found that populations lost lineage diversity at distinct rates corresponding to their antibiotic regimen. Additionally, by quantifying the reproducibility of these dynamics across replicate populations, we found that some lineages had similar fates over independent experiments. Combined with an analysis of individual lineage trajectories, these results suggest how standing genetic variation and new mutations may contribute to adaptation to sub-inhibitory antibiotic levels. Altogether, our results demonstrate the power of high-resolution barcoding in studying the dynamics of bacterial evolution.



GigaScience ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Anton Zamyatin ◽  
Pavel Avdeyev ◽  
Jiangtao Liang ◽  
Atashi Sharma ◽  
Chujia Chen ◽  
...  

Abstract Background Anopheles coluzzii and Anopheles arabiensis belong to the Anopheles gambiae complex and are among the major malaria vectors in sub-Saharan Africa. However, chromosome-level reference genome assemblies are still lacking for these medically important mosquito species. Findings In this study, we produced de novo chromosome-level genome assemblies for A. coluzzii and A. arabiensis using the long-read Oxford Nanopore sequencing technology and the Hi-C scaffolding approach. We obtained 273.4 and 256.8 Mb of the total assemblies for A. coluzzii and A. arabiensis, respectively. Each assembly consists of 3 chromosome-scale scaffolds (X, 2, 3), complete mitochondrion, and unordered contigs identified as autosomal pericentromeric DNA, X pericentromeric DNA, and Y sequences. Comparison of these assemblies with the existing assemblies for these species demonstrated that we obtained improved reference-quality genomes. The new assemblies allowed us to identify genomic coordinates for the breakpoint regions of fixed and polymorphic chromosomal inversions in A. coluzzii and A. arabiensis. Conclusion The new chromosome-level assemblies will facilitate functional and population genomic studies in A. coluzzii and A. arabiensis. The presented assembly pipeline will accelerate progress toward creating high-quality genome references for other disease vectors.



eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Marc J Williams ◽  
Luis Zapata ◽  
Benjamin Werner ◽  
Chris P Barnes ◽  
Andrea Sottoriva ◽  
...  

The distribution of fitness effects (DFE) defines how new mutations spread through an evolving population. The ratio of non-synonymous to synonymous mutations (dN/dS) has become a popular method to detect selection in somatic cells. However the link, in somatic evolution, between dN/dS values and fitness coefficients is missing. Here we present a quantitative model of somatic evolutionary dynamics that determines the selective coefficients of individual driver mutations from dN/dS estimates. We then measure the DFE for somatic mutant clones in ostensibly normal oesophagus and skin. We reveal a broad distribution of fitness effects, with the largest fitness increases found for TP53 and NOTCH1 mutants (proliferative bias 1–5%). This study provides the theoretical link between dN/dS values and selective coefficients in somatic evolution, and measures the DFE of mutations in human tissues.



Author(s):  
Anton Zamyatin ◽  
Pavel Avdeyev ◽  
Jiangtao Liang ◽  
Atashi Sharma ◽  
Chujia Chen ◽  
...  

AbstractBackgroundAnopheles coluzzii and An. arabiensis belong to the An. gambiae complex and are among the major malaria vectors in Sub-Saharan Africa. However, chromosome-level reference genome assemblies are still lacking for these medically important mosquito species.FindingsIn this study, we produced de novo chromosome-level genome assemblies for An. coluzzii and An. arabiensis using the long-read Oxford Nanopore sequencing technology and the Hi-C scaffolding approach. We obtained 273.4 Mbp and 265.7 Mbp assemblies for An. coluzzii and An. arabiensis, respectively. Each assembly consists of three chromosome-scale scaffolds (X, 2, 3), complete mitochondrion, and unordered contigs identified as autosomal pericentromeric DNA, X pericentromeric DNA, and Y sequences. Comparison of these assemblies with the existing assemblies for these species demonstrated that we obtained improved reference-quality genomes. The new assemblies allowed us to identify genomic coordinates for the breakpoint regions of fixed and polymorphic chromosomal inversions in An. coluzzii and An. arabiensis.ConclusionThe new chromosome-level assemblies will facilitate functional and population genomic studies in An. coluzzii and An. arabiensis. The presented assembly pipeline will accelerate progress toward creating high-quality genome references for other disease vectors.



Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 236-236
Author(s):  
Raphael Szalat ◽  
Niccolo Bolli ◽  
Francesco Maura ◽  
Stephane Minvielle ◽  
Dominik Gloznik ◽  
...  

Abstract INTRODUCTION: Multiple myeloma is a heterogeneous disease featured by recurrent translocations involving the IgH region. Such cytogenetic events have a driver role in early transformation of a normal plasma cell into a MM cell. Although several studies have reported the presence of limited number of other structural chromosomal events using different approaches, including conventional cytogenetics, high-resolution genome mapping, interphase fluorescence in situ hybridization (FISH) and whole exome sequencing, the full catalogue of genomic rearrangements in MM samples has never been carried out systematically. Here, we have utilized whole-genome sequencing technologies to perform a systematic, genome-wide analysis to uncover the frequency and nature of rearrangements in MM. MATERIAL AND METHODS: We performed Whole genome sequencing (WGS) using the Illumina X10 platform in 68 serial samples from 30 patients including 11 patients with smoldering myeloma, 13 newly-diagnosed patients and 44 relapsed patient samples to provide further insight into evolution of rearrangements in MM. Structural variations (translocations, deletions, inversions, internal tandem duplications, fusions) and copy number changes were analyzed using the analysis pipeline at the Wellcome Trust Sanger Institute as recently described (Nik-Zainal Nature 2016). RESULTS: We observed a total of 1295 rearrangements for a median of 27 per sample (range 2-138) including a median of 6 (range 1-36) inversions, 5 (range 1-33) internal tandem duplications, 10 (range 1-40) deletions, 7 (range 1-32) translocations and 5 fusions (0-20). While the vast majority of events was non-recurrent, the high prevalence of rearrangements at smoldering stage and in myeloma at diagnosis and further increase at the time of relapse suggest a much more complex genomic landscape than previously thought. Translocations involving the IGH locus were identified including t(11;14) in 6 (20%), t(4;14) in 4 (13%) and t(8;14) in 3 (10%) of 30 unique patients. We also report frequent involvement by light chain loci in the rearrangements. The MYC locus was recurrently affected by non-IGH rearrangements in 11/30 (36%) patients. The other main MYC partners were IGL (4/30) and IGK (2/30), while about one-third of cases were involved by rearrangements not involving immunoglobulins or other obvious partners. MYC is therefore frequently involved by rearrangements through immunoglobulin-independent mechanisms. Interestingly, many regions affected by recurrent copy number abnormalities (CNAs) were associated with rearrangements. In particular 7/14 (50%) 1q gains and 6/8 (75%) 1p deletions were involved by translocations and inversions respectively (i.e Figure 1a). Overall 15/22 chromosome 1 CNAs were associated with a specific rearrangements. A similar association between copy number changes and rearrangement breakpoints was observed among other recurrent genomic aberrations such as 6q deletions (6/12, 50%), 8p deletions (4/7, 57%) and 16q deletions (7/13, 53%). In addition to deletions, inversions, internal tandem duplications (ITDs) and translocations, we observed at least one and often more regions of chromothripsis in 10/30 (33%) patients. Chromothripsis represents a complex event characterized by localized chromosome shattering and repair occurring in a one-off catastrophic event (Korbel J. et al. Cell 2013) (Figure 1b) and known to be associated with worse prognosis in MM. In our series, chromothriptic events were always conserved during every investigated evolution process: suggesting an early onset of this complex event in myelomagenesis. CONCLUSION: We report for the first time a comprehensive catalogue of rearrangements in MM based on whole-genome sequencing data. Our data provide evidence that the genomic landscape of rearrangements in MM is very complex and heterogeneous than speculated before and besides IgH involves number of other recurrent chromosomal alteration mechanisms. These diverse aberrations, in many cases acquired early, may deregulate oncogenes as illustrated by the MYC locus. Figure 1. Figure 1. Disclosures Moreau: Celgene: Honoraria; Amgen: Honoraria; Takeda: Honoraria; Janssen: Honoraria, Speakers Bureau; Novartis: Honoraria; Bristol-Myers Squibb: Honoraria. Avet-Loiseau:sanofi: Consultancy; celgene: Consultancy; amgen: Consultancy; janssen: Consultancy.



2021 ◽  
Author(s):  
Dat Mai ◽  
Doris Bachtrog

Chromosomal inversions are fundamental drivers of genome evolution. In the Drosophila genus, inversions have been widely characterized cytologically, and play an important role in local adaptation. Here, we characterize chromosomal inversions in the Drosophila nasuta species group using chromosome-level, reference-quality assemblies of seven species and subspecies in this clade. Reconstruction of ancestral karyotypes allowed us to infer the order in which the 22 identified inversions occurred along the phylogeny. We found a higher rate of inversions on the X chromosome, and heterogeneity in the rate of accumulation across the phylogeny. We molecularly characterize the breakpoints of six autosomal inversions, and found that repeated sequences are associated with inversion breakpoints in four of these inversions, suggesting that ectopic recombination is an important mechanism in generating inversion. Characterization of inversions in this species group provides a foundation for future population genetic and functional studies in this recently diverged species group.



Sign in / Sign up

Export Citation Format

Share Document