scholarly journals Circuit mechanisms underlying chromatic encoding in Drosophila photoreceptors

2019 ◽  
Author(s):  
Sarah L. Heath ◽  
Matthias P. Christenson ◽  
Elie Oriol ◽  
Maia Saavedra-Weisenhaus ◽  
Jessica R. Kohn ◽  
...  

AbstractSpectral information is commonly processed in the brain through generation of antagonistic responses to different wavelengths. In many species, these color opponent signals arise as early as photoreceptor terminals. Here, we measure the spectral tuning of photoreceptors in Drosophila. In addition to a previously described pathway comparing wavelengths at each point in space, we find a horizontal-cell-mediated pathway similar to that found in mammals. This pathway enables additional spectral comparisons through lateral inhibition, expanding the range of chromatic encoding in the fly. Together, these two pathways enable optimal decorrelation of photoreceptor signals. A biologically constrained model accounts for our findings and predicts a spatio-chromatic receptive field for fly photoreceptor outputs, with a color opponent center and broadband surround. This dual mechanism combines motifs of both an insect-specific visual circuit and an evolutionarily convergent circuit architecture, endowing flies with the unique ability to extract chromatic information at distinct spatial resolutions.

1996 ◽  
Vol 76 (3) ◽  
pp. 2005-2019 ◽  
Author(s):  
W. A. Hare ◽  
W. G. Owen

1. It is widely believed that signals contributing to the receptive field surrounds of retinal bipolar cells pass from horizontal cells to bipolar cells via GABAergic synapses. To test this notion, we applied gamma-aminobutyric acid (GABA) agonists and antagonists to isolated, perfused retinas of the salamander Ambystoma tigrinum while recording intracellularly from bipolar cells, horizontal cells, and photoreceptors. 2. As we previously reported, administration of the GABA analogue D-aminovaleric acid in concert with picrotoxin did not block horizontal cell responses or the center responses of bipolar cells but blocked the surround responses of both on-center and off-center bipolar cells. 3. Surround responses were not blocked by the GABA, antagonists picrotoxin or bicuculline, the GABAB agonist baclofen or the GABAB antagonist phaclofen, and the GABAC antagonists picrotoxin or cis-4-aminocrotonic acid. Combinations of these drugs were similarly ineffective. 4. GABA itself activated a powerful GABA uptake mechanism in horizontal cells for which nipecotic acid is a competitive agonist. It also activated, both in horizontal cells and bipolar cells, large GABAA conductances that shunted light responses but that could be blocked by picrotoxin or bicuculline. 5. GABA, administered together with picrotoxin to block the shunting effect of GABAA activation, did not eliminate bipolar cell surround responses at concentrations sufficient to saturate the known types of GABA receptors. 6. Surround responses were not blocked by glycine or its antagonist strychnine, or by combinations of drugs designed to eliminate GABAergic and glycinergic pathways simultaneously. 7. Although we cannot fully discount the involvement of a novel GABAergic synapse, the simplest explanation of our findings is that the primary pathway mediating the bipolar cell's surround is neither GABAergic nor glycinergic.


2011 ◽  
Vol 106 (4) ◽  
pp. 1862-1874 ◽  
Author(s):  
Jan Churan ◽  
Daniel Guitton ◽  
Christopher C. Pack

Our perception of the positions of objects in our surroundings is surprisingly unaffected by movements of the eyes, head, and body. This suggests that the brain has a mechanism for maintaining perceptual stability, based either on the spatial relationships among visible objects or internal copies of its own motor commands. Strong evidence for the latter mechanism comes from the remapping of visual receptive fields that occurs around the time of a saccade. Remapping occurs when a single neuron responds to visual stimuli placed presaccadically in the spatial location that will be occupied by its receptive field after the completion of a saccade. Although evidence for remapping has been found in many brain areas, relatively little is known about how it interacts with sensory context. This interaction is important for understanding perceptual stability more generally, as the brain may rely on extraretinal signals or visual signals to different degrees in different contexts. Here, we have studied the interaction between visual stimulation and remapping by recording from single neurons in the superior colliculus of the macaque monkey, using several different visual stimulus conditions. We find that remapping responses are highly sensitive to low-level visual signals, with the overall luminance of the visual background exerting a particularly powerful influence. Specifically, although remapping was fairly common in complete darkness, such responses were usually decreased or abolished in the presence of modest background illumination. Thus the brain might make use of a strategy that emphasizes visual landmarks over extraretinal signals whenever the former are available.


eNeuro ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. ENEURO.0022-20.2020
Author(s):  
Billie Beckwith-Cohen ◽  
Lars C. Holzhausen ◽  
Scott Nawy ◽  
Richard H. Kramer

2006 ◽  
Vol 46 (4) ◽  
pp. 467-474 ◽  
Author(s):  
Herbert A. Reitsamer ◽  
Renate Pflug ◽  
Melchior Franz ◽  
Sonja Huber

2019 ◽  
Vol 15 (5) ◽  
pp. 20190134 ◽  
Author(s):  
Luis Nahmad-Rohen ◽  
Misha Vorobyev

Behavioural contrast sensitivity in Octopus tetricus was measured in the range of 0.05–12 cycles per degree (cpd) using a fixation reflex. We show that the contrast sensitivity reaches its maximum (between 1 and 4%) at 0.3 cpd, and decreases to approximately half of the maximum value at the lowest spatial frequency. Reduction of sensitivity at low spatial frequency is a signature of lateral inhibition in visual systems. In vertebrates and insects, lateral inhibition helps to overcome the bottleneck of encoding information into spikes. In octopus, photoreceptors generate spikes themselves and are directly connected to the brain through their axons. Therefore, the neural processing occurring in the octopus brain cannot help overcome the bottleneck of encoding information into spikes. We conclude that, in octopus, either the lateral inhibition occurs in the brain after information has been encoded into spikes, or photoreceptors inhibit each other. This is the first time behavioural contrast sensitivity has been measured in a cephalopod.


2017 ◽  
Vol 56 (30) ◽  
pp. 8555 ◽  
Author(s):  
Shangnan Zhao ◽  
Yong Song ◽  
Yufei Zhao ◽  
Yun Li ◽  
Lin Li ◽  
...  

1974 ◽  
Vol 63 (1) ◽  
pp. 62-87 ◽  
Author(s):  
Frank S. Werblin

Test stimuli, presented at the center of the bipolar cell receptive field, spanning less than 2 log units of intensity, elicit the full range of graded response. The intensity range of test stimuli that elicits the graded response depends upon the background conditions. A higher range of log test intensities is required to elicit the graded bipolar response in the presence of surround backgrounds. But surround backgrounds can also serve to unsaturate the bipolar response and thereby increase sensitivity under certain conditions. The results suggest that a second stage of sensitivity-control is mediated by the horizontal cell system at the outer plexiform layer, concatenated with the effects of adaptation in the photoreceptors.


2002 ◽  
Vol 147 (3) ◽  
pp. 296-304 ◽  
Author(s):  
Tetsuo Furukawa ◽  
Renata Petruv ◽  
Syozo Yasui ◽  
Masahiro Yamada ◽  
Mustafa Djamgoz

1991 ◽  
Vol 7 (5) ◽  
pp. 441-450 ◽  
Author(s):  
William H. Baldridge ◽  
Alexander K. Ball

AbstractThe effect of background illumination on horizontal cell receptive-field size and dye coupling was investigated in isolated superfused goldfish retinas. Background illumination reduced both horizontal cell receptive-field size and dye coupling. The effect of light on horizontal cell receptive-field size was mimicked by treating the retina with 20 μM dopamine. To test the hypothesis that the effects of light were due to endogenous dopamine release, the effect of light was studied in goldfish retinas in which dopaminergic interplexiform cells were lesioned using 6-hydroxydopamine treatment. In lesioned retinas, background illumination reduced both horizontal cell receptive-field size and dye coupling. Furthermore, the effect of background illumination on unlesioned animals could not be blocked by prior treatment with the D1 dopamine receptor antagonist SCH-23390. These results suggest that, in goldfish retina, dopamine release is not the only mechanism by which horizontal cell receptive-field size could be reduced by light.


1976 ◽  
Vol 67 (6) ◽  
pp. 679-690 ◽  
Author(s):  
R F Miller ◽  
R F Dacheux

A chloride-free environment produces selective changes in the retinal network which include a separation of on and off channels. The identification of chloride-sensitive and insensitivie neuronal activity permits identification of some of the connections and intervening polarities of synaptic interactions which are expressed in ganglion cell receptive field organization. These experiments support previous suggestions that surround antagonism is dependent on horizontal cell activity. In addition they suggest a model of the neuronal connections which subserve on-center, off-center, and on-off ganglion cells. Experimental tests of the on-off ganglion cell model favor the idea that this type of ganglion cell receives inhibitory input from amacrine cells and excitatory activation from depolarizing and hyperpolarizing bipolar cells.


Sign in / Sign up

Export Citation Format

Share Document