scholarly journals Neurodevelopmental shifts in learned value transfer on cognitive control during adolescence

2019 ◽  
Author(s):  
Catherine Insel ◽  
Mia Charifson ◽  
Leah H. Somerville

AbstractValue-associated cues in the environment often enhance subsequent goal-directed behaviors in adults, a phenomenon supported by integration of motivational and cognitive neural systems. Given the interactions among these systems change throughout adolescence, we tested when beneficial effects of value associations on subsequent cognitive control performance emerge during adolescence. Participants (N=81) aged 13-20 completed a reinforcement learning task with four cue-incentive pairings that could yield high gain, low gain, high loss, or low loss outcomes. Next, participants completed a Go/NoGo task during fMRI where the NoGo targets comprised the previously learned cues, which tested how prior value associations influence cognitive control performance. Improved accuracy for previously learned high gain relative to low gain cues emerged with age. Older adolescents exhibited enhanced recruitment of the dorsal striatum and ventrolateral prefrontal cortex during cognitive control execution to previously learned high gain relative to low gain cues. Older adolescents also expressed increased coupling between the dorsal striatum and dorsolateral prefrontal cortex for high gain cues, whereas younger adolescents expressed increased coupling between the striatum and ventromedial prefrontal cortex. These findings reveal that learned high value cue-incentive associations enhance cognitive control in late adolescence in parallel with value-selective recruitment of corticostriatal systems.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Andreea Oliviana Diaconescu ◽  
Madeline Stecy ◽  
Lars Kasper ◽  
Christopher J Burke ◽  
Zoltan Nagy ◽  
...  

Decision making requires integrating knowledge gathered from personal experiences with advice from others. The neural underpinnings of the process of arbitrating between information sources has not been fully elucidated. In this study, we formalized arbitration as the relative precision of predictions, afforded by each learning system, using hierarchical Bayesian modeling. In a probabilistic learning task, participants predicted the outcome of a lottery using recommendations from a more informed advisor and/or self-sampled outcomes. Decision confidence, as measured by the number of points participants wagered on their predictions, varied with our definition of arbitration as a ratio of precisions. Functional neuroimaging demonstrated that arbitration signals were independent of decision confidence and involved modality-specific brain regions. Arbitrating in favor of self-gathered information activated the dorsolateral prefrontal cortex and the midbrain, whereas arbitrating in favor of social information engaged the ventromedial prefrontal cortex and the amygdala. These findings indicate that relative precision captures arbitration between social and individual learning systems at both behavioral and neural levels.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Albert Lehr ◽  
Niklas Henneberg ◽  
Tarana Nigam ◽  
Walter Paulus ◽  
Andrea Antal

Behavioral response conflict arises in the color-word Stroop task and triggers the cognitive control network. Midfrontal theta-band oscillations correlate with adaptive control mechanisms during and after conflict resolution. In order to prove causality, in two experiments, we applied transcranial alternating current stimulation (tACS) at 6 Hz to the dorsolateral prefrontal cortex (DLPFC) during Stroop task performance. Sham stimulation served as a control in both experiments; 9.7 Hz tACS served as a nonharmonic alpha band control in the second experiment. We employed generalized linear mixed models for analysis of behavioral data. Accuracy remained unchanged by any type of active stimulation. Over both experiments, the Stroop effect (response time difference between congruent and incongruent trials) was reduced by 6 Hz stimulation as compared to sham, mainly in trials without prior conflict adaptation. Alpha tACS did not modify the Stroop effect. Theta tACS can both reduce the Stroop effect and modulate adaptive mechanisms of the cognitive control network, suggesting midfrontal theta oscillations as causally involved in cognitive control.


2019 ◽  
Vol 8 (4) ◽  
pp. 416 ◽  
Author(s):  
Larissa Hauer ◽  
Johann Sellner ◽  
Francesco Brigo ◽  
Eugen Trinka ◽  
Luca Sebastianelli ◽  
...  

Repetitive transcranial magnetic stimulation (rTMS) may be effective for enhancing cognitive functioning. In this review, we aimed to systematically evaluate the effects of rTMS on attention in psychiatric diseases. In particular, we searched PubMed and Embase to examine the effectiveness of rTMS administered to the dorsolateral prefrontal cortex (DLPFC) on this specific cognitive domain. The search identified 24 articles, 21 of which met inclusion and exclusion criteria. Among them, nine were conducted in patients with depression, four in patients with schizophrenia, three in patients with autism spectrum disorder (ASD), two in patients with attention deficit hyperactivity disorder, one each in patients with Alzheimer’s disease and in patients with alcohol or methamphetamine addiction. No evidence for cognitive adverse effects was found in all the included rTMS studies. Several studies showed a significant improvement of attentional function in patients with depression and schizophrenia. The beneficial effects on attention and other executive functions suggest that rTMS has the potential to target core features of ASD. rTMS may influence the attentional networks in alcohol-dependent and other addicted patients. We also reviewed and discussed the studies assessing the effects of rTMS on attention in the healthy population. This review suggests that prefrontal rTMS could exert procognitive effects on attention in patients with many psychiatric disorders.


2016 ◽  
Vol 113 (20) ◽  
pp. 5582-5587 ◽  
Author(s):  
Toshio Yamagishi ◽  
Haruto Takagishi ◽  
Alan de Souza Rodrigues Fermin ◽  
Ryota Kanai ◽  
Yang Li ◽  
...  

Human prosociality has been traditionally explained in the social sciences in terms of internalized social norms. Recent neuroscientific studies extended this traditional view of human prosociality by providing evidence that prosocial choices in economic games require cognitive control of the impulsive pursuit of self-interest. However, this view is challenged by an intuitive prosociality view emphasizing the spontaneous and heuristic basis of prosocial choices in economic games. We assessed the brain structure of 411 players of an ultimatum game (UG) and a dictator game (DG) and measured the strategic reasoning ability of 386. According to the reflective norm-enforcement view of prosociality, only those capable of strategically controlling their selfish impulses give a fair share in the UG, but cognitive control capability should not affect behavior in the DG. Conversely, we support the intuitive prosociality view by showing for the first time, to our knowledge, that strategic reasoning and cortical thickness of the dorsolateral prefrontal cortex were not related to giving in the UG but were negatively related to giving in the DG. This implies that the uncontrolled choice in the DG is prosocial rather than selfish, and those who have a thicker dorsolateral prefrontal cortex and are capable of strategic reasoning (goal-directed use of the theory of mind) control this intuitive drive for prosociality as a means to maximize reward when there are no future implications of choices.


Sign in / Sign up

Export Citation Format

Share Document