scholarly journals Probing the neural dynamics of mnemonic representations after the initial consolidation

2019 ◽  
Author(s):  
Wei Liu ◽  
Nils Kohn ◽  
Guillén Fernández

AbstractMemories are not stored as static engrams, but as dynamic representations affected by processes occurring after initial encoding. Previous studies revealed changes in activity and mnemonic representations in visual processing areas, parietal lobe, and hippocampus underlying repeated retrieval and suppression. However, these neural changes are usually induced by memory modulation immediately after memory formation. Here, we investigated 27 healthy participants with a two-day functional Magnetic Resonance Imaging design to probe how established memories are dynamically modulated by retrieval and suppression 24 hours after learning. Behaviorally, we demonstrated that established memories can still be strengthened by repeated retrieval. By contrast, repeated suppression had a modest negative effect, and suppression-induced forgetting was associated with individual suppression efficacy. Neurally, we demonstrated item-specific pattern reinstatements in visual processing areas, parietal lobe, and hippocampus. Then, we showed that repeated retrieval reduced activity amplitude in the ventral visual cortex and hippocampus, but enhanced the distinctiveness of activity patterns in the ventral visual cortex and parietal lobe. Critically, reduced activity was associated with enhanced representation of idiosyncratic memory traces in ventral visual cortex and precuneus. In contrast, repeated memory suppression was associated with the reduced lateral prefrontal activity, but relative intact mnemonic representations. Our results replicated most of the neural changes induced by memory retrieval and suppression immediately after learning and extended those findings to established memories after initial consolidation. Active retrieval seems to promote episode-unique mnemonic representations in the neocortex after initial encoding but also consolidation.HighlightsRepeated retrieval strengthened consolidated memories, while repeated suppression had a modest negative effect.Pattern reinstatements of individual memories were detected in the visual area, parietal lobe, and hippocampus after 24 hours.After repeated retrieval, reduced activity amplitude was associated with increased distinctiveness of activity patterns in the ventral visual cortex and right precuneus.Repeated suppression was associated with the reduced lateral prefrontal activity, but unchanged mnemonic representations.

Author(s):  
Jinwoo Kim ◽  
Min Song ◽  
Se-Bum Paik

AbstractIn the primary visual cortex (V1) of higher mammals, long-range horizontal connections (LHCs) are observed to develop, linking iso-orientation domains of cortical tuning. It is unknown how this feature-specific wiring of circuitry develops before eye opening. Here, we show that LHCs in V1 may originate from spatio-temporally structured feedforward activities generated from spontaneous retinal waves. Using model simulations based on the anatomy and observed activity patterns of the retina, we show that waves propagating in retinal mosaics can initialize the wiring of LHCs by co-activating neurons of similar tuning, whereas equivalent random activities cannot induce such organizations. Simulations showed that emerged LHCs can produce the patterned activities observed in V1, matching topography of the underlying orientation map. We also confirmed that the model can also reproduce orientation-specific microcircuits in salt-and-pepper organizations in rodents. Our results imply that early peripheral activities contribute significantly to cortical development of functional circuits.HighlightsDevelopmental model of long-range horizontal connections (LHCs) in V1 is simulatedSpontaneous retinal waves generate feature-specific wiring of LHCs in visual cortexEmerged LHCs induce orientation-matching patterns of spontaneous cortical activityRetinal waves induce orientation-specific microcircuits of visual cortex in rodentsSignificance statementLong-range horizontal connections (LHCs) in the primary visual cortex (V1) are observed to emerge before the onset of visual experience, selectively connecting iso-domains of orientation maps. However, it is unknown how such tuning-specific wirings develop before eye-opening. Here, we show that LHCs in V1 originate from the tuning-specific activation of cortical neurons by spontaneous retinal waves during early developmental stages. Our simulations of a visual cortex model show that feedforward activities from the retina initialize the spatial organization of activity patterns in V1, which induces visual feature-specific wirings of V1 neurons. Our model also explains the origin of cortical microcircuits observed in rodents, suggesting that the proposed developmental mechanism is applicable universally to circuits of various mammalian species.


2015 ◽  
Vol 20 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Boris Suchan ◽  
Silja Vocks ◽  
Manuel Waldorf

Body image disturbance is one of the main symptoms of eating disorders; however, the neural basis of this phenomenon is not well understood yet. In the present paper, we review studies investigating the neuronal correlates of visual body perception in anorexia nervosa. We first focus on the well-known parietal lobe contribution to body image processing and its malfunction. Additionally, we focus on the contribution and involvement of the extrastriate and fusiform body area in eating disorders, especially anorexia nervosa. The summarized studies provide first evidence for a reduced activity, volume, and connectivity in brain areas involved and specialized in the visual processing of human bodies. In general, the reviewed studies provide evidence for abnormalities in body-processing brain areas in anorexia nervosa, indicating two structures in the brain that are involved: early stages of body processing in the visual extrastriate cortex and later stages in the parietal cortex.


2020 ◽  
Author(s):  
Andrew E. Silva ◽  
Benjamin Thompson ◽  
Zili Liu

AbstractThis study explores how the human brain solves the challenge of flicker noise in motion processing. Despite providing no useful directional motion information, flicker is common in the visual environment and exhibits omnidirectional motion energy which is processed by low-level motion detectors. Models of motion processing propose a mechanism called motion opponency that reduces the processing of flicker noise. Motion opponency involves the pooling of local motion signals to calculate an overall motion direction. A neural correlate of motion opponency has been observed in human area MT+/V5 using fMRI, whereby stimuli with perfectly balanced motion energy constructed from dots moving in counter-phase elicit a weaker BOLD response than non-balanced (in-phase) motion stimuli. Building on this previous work, we used multivariate pattern analysis to examine whether the patterns of brain activation elicited by motion opponent stimuli resemble the activation elicited by flicker noise across the human visual cortex. Robust multivariate signatures of opponency were observed in V5 and in V3A. Our results support the notion that V5 is centrally involved in motion opponency and in the reduction of flicker noise during visual processing. Furthermore, these results demonstrate the utility of powerful multivariate analysis methods in revealing the role of additional visual areas, such as V3A, in opponency and in motion processing more generally.HighlightsOpponency is demonstrated in multivariate and univariate analysis of V5 data.Multivariate fMRI also implicates V3A in motion opponency.Multivariate analyses are useful for examining opponency throughout visual cortex.


2014 ◽  
Vol 26 (7) ◽  
pp. 1546-1554 ◽  
Author(s):  
Peter Kok ◽  
Michel F. Failing ◽  
Floris P. de Lange

Sensory processing is strongly influenced by prior expectations. Valid expectations have been shown to lead to improvements in perception as well as in the quality of sensory representations in primary visual cortex. However, very little is known about the neural correlates of the expectations themselves. Previous studies have demonstrated increased activity in sensory cortex following the omission of an expected stimulus, yet it is unclear whether this increased activity constitutes a general surprise signal or rather has representational content. One intriguing possibility is that top–down expectation leads to the formation of a template of the expected stimulus in visual cortex, which can then be compared with subsequent bottom–up input. To test this hypothesis, we used fMRI to noninvasively measure neural activity patterns in early visual cortex of human participants during expected but omitted visual stimuli. Our results show that prior expectation of a specific visual stimulus evokes a feature-specific pattern of activity in the primary visual cortex (V1) similar to that evoked by the corresponding actual stimulus. These results are in line with the notion that prior expectation triggers the formation of specific stimulus templates to efficiently process expected sensory inputs.


2021 ◽  
pp. 1-14
Author(s):  
Jie Huang ◽  
Paul Beach ◽  
Andrea Bozoki ◽  
David C. Zhu

Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Aβ) and neurofibrillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order association areas to lower-order areas and then primary visual area (V1) with disease progression. Objective: This study investigated the effect of AD severity on visual functional network. Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC) network and a face-evoked visual-processing network were identified for each group. Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing activation in the lower-order areas. Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.


2009 ◽  
Vol 102 (6) ◽  
pp. 3469-3480 ◽  
Author(s):  
H. M. Van Ettinger-Veenstra ◽  
W. Huijbers ◽  
T. P. Gutteling ◽  
M. Vink ◽  
J. L. Kenemans ◽  
...  

It is well known that parts of a visual scene are prioritized for visual processing, depending on the current situation. How the CNS moves this focus of attention across the visual image is largely unknown, although there is substantial evidence that preparation of an action is a key factor. Our results support the view that direct corticocortical feedback connections from frontal oculomotor areas to the visual cortex are responsible for the coupling between eye movements and shifts of visuospatial attention. Functional magnetic resonance imaging (fMRI)–guided transcranial magnetic stimulation (TMS) was applied to the frontal eye fields (FEFs) and intraparietal sulcus (IPS). A single pulse was delivered 60, 30, or 0 ms before a discrimination target was presented at, or next to, the target of a saccade in preparation. Results showed that the known enhancement of discrimination performance specific to locations to which eye movements are being prepared was enhanced by early TMS on the FEF contralateral to eye movement direction, whereas TMS on the IPS resulted in a general performance increase. The current findings indicate that the FEF affects selective visual processing within the visual cortex itself through direct feedback projections.


2015 ◽  
Vol 27 (11) ◽  
pp. 2117-2125 ◽  
Author(s):  
Reshanne R. Reeder ◽  
Francesca Perini ◽  
Marius V. Peelen

Theories of visual selective attention propose that top–down preparatory attention signals mediate the selection of task-relevant information in cluttered scenes. Neuroimaging and electrophysiology studies have provided correlative evidence for this hypothesis, finding increased activity in target-selective neural populations in visual cortex in the period between a search cue and target onset. In this study, we used online TMS to test whether preparatory neural activity in visual cortex is causally involved in naturalistic object detection. In two experiments, participants detected the presence of object categories (cars, people) in a diverse set of photographs of real-world scenes. TMS was applied over a region in posterior temporal cortex identified by fMRI as carrying category-specific preparatory activity patterns. Results showed that TMS applied over posterior temporal cortex before scene onset (−200 and −100 msec) impaired the detection of object categories in subsequently presented scenes, relative to vertex and early visual cortex stimulation. This effect was specific to category level detection and was related to the type of attentional template participants adopted, with the strongest effects observed in participants adopting category level templates. These results provide evidence for a causal role of preparatory attention in mediating the detection of objects in cluttered daily-life environments.


10.1167/8.7.2 ◽  
2008 ◽  
Vol 8 (7) ◽  
pp. 2 ◽  
Author(s):  
Fang Fang ◽  
Daniel Kersten ◽  
Scott O. Murray

NeuroImage ◽  
2012 ◽  
Vol 63 (3) ◽  
pp. 1464-1477 ◽  
Author(s):  
Andreas A. Ioannides ◽  
Vahe Poghosyan ◽  
Lichan Liu ◽  
George A. Saridis ◽  
Marco Tamietto ◽  
...  

2017 ◽  
Vol 117 (1) ◽  
pp. 388-402 ◽  
Author(s):  
Michael A. Cohen ◽  
George A. Alvarez ◽  
Ken Nakayama ◽  
Talia Konkle

Visual search is a ubiquitous visual behavior, and efficient search is essential for survival. Different cognitive models have explained the speed and accuracy of search based either on the dynamics of attention or on similarity of item representations. Here, we examined the extent to which performance on a visual search task can be predicted from the stable representational architecture of the visual system, independent of attentional dynamics. Participants performed a visual search task with 28 conditions reflecting different pairs of categories (e.g., searching for a face among cars, body among hammers, etc.). The time it took participants to find the target item varied as a function of category combination. In a separate group of participants, we measured the neural responses to these object categories when items were presented in isolation. Using representational similarity analysis, we then examined whether the similarity of neural responses across different subdivisions of the visual system had the requisite structure needed to predict visual search performance. Overall, we found strong brain/behavior correlations across most of the higher-level visual system, including both the ventral and dorsal pathways when considering both macroscale sectors as well as smaller mesoscale regions. These results suggest that visual search for real-world object categories is well predicted by the stable, task-independent architecture of the visual system. NEW & NOTEWORTHY Here, we ask which neural regions have neural response patterns that correlate with behavioral performance in a visual processing task. We found that the representational structure across all of high-level visual cortex has the requisite structure to predict behavior. Furthermore, when directly comparing different neural regions, we found that they all had highly similar category-level representational structures. These results point to a ubiquitous and uniform representational structure in high-level visual cortex underlying visual object processing.


Sign in / Sign up

Export Citation Format

Share Document