scholarly journals Cleavage, down-regulation and aggregation of serum amyloid A

2019 ◽  
Author(s):  
Wenhua Wang ◽  
Prabir Khatua ◽  
Ulrich H.E. Hansmann

AbstractVarious diseases cause over-expression of the serum amyloid A protein (SAA), which leads in some, but not all, cases to amyloidosis as a secondary disease. The response to the over-expression involves dissociation of SAA hexamer and subsequent cleavage of the released monomers, most commonly yielding fragments SAA1−76 of the full-sized SAA1−104. We report results from molecular dynamic simulations that probe the role of this cleavage for down-regulating activity and the concentration of SAA. We propose a mechanism that relies on two elements. First, the probability to assemble into hexamers is lower for the fragments than it is for the full-sized protein. Second, unlike other fragments SAA1−76 can switch between two distinct configurations. The first kind is easy to proteolyze (allowing a fast reduction of SAA concentration) but prone to aggregation, while the situation is opposite for the second kind. If the time scale for amyloid formation is longer than the one for proteolysis, the aggregation-prone species dominates. However, if environmental conditions such as low pH increase the risk of amyloid formation, the ensemble shifts toward the more protected form. We speculate that SAA amyloidosis is a failure of the switching mechanism leading to accumulation of the aggregation-prone species and subsequent amyloid formation.

2021 ◽  
Author(s):  
Shreya Ghosh ◽  
Akansha Garg ◽  
Chayanika Kala ◽  
Ashwani Kumar Thakur

AbstractThe formation of granuloma is one of the characteristic feature of tuberculosis. Besides, rise in the concentration of acute phase response proteins mainly serum amyloid A is the indicator for chronic inflammation associated with tuberculosis. Serum amyloid A drives secondary amyloidosis in tuberculosis and other chronic inflammatory conditions. The linkage between serum amyloid A (SAA) protein and amyloid deposition site is not well understood in tuberculosis and other chronic inflammatory conditions. We hypothesized that granuloma could be a potential site for amyloid deposition because of the presence of serum amyloid A protein and proteases that cleave SAA and trigger amyloid formation. Based on this hypothesis, for the first time we have shown the presence of amyloid deposits in the granuloma of tuberculosis patients using the gold standard, Congo red dye staining.


Author(s):  
Syed Wali Peeran ◽  
Ahmed Elhassan ◽  
Mohammed Zameer ◽  
Syed Nahid Basheer ◽  
Mohammed Mustafa ◽  
...  

Serum Amyloid A (SAA) is an Acute-Phase Protein (APP) produced as an innate nonspecific response to any tissue damage. Hence, it plays a significant role in chronic inflammatory diseases. In particular, SAA levels increase dramatically in chronic periodontitis and chronic apical periodontitis. Recent studies suggest this role of SAA in the pathogenesis of various diseases, including chronic periodontitis and chronic apical periodontitis. Thus, the focus of this review is to sum up the current understanding of the role of SAA in health and disease and to elaborate on possible mechanisms by which SAA could play a role in the pathogenesis of chronic periodontitis and chronic apical periodontitis.


2021 ◽  
Author(s):  
Asis K Jana ◽  
Augustus B. Greenwood ◽  
Ulrich H.E. Hansmann

A marker for the severeness and disease progress of COVID-19 is overexpression of serum amyloid A (SAA) to levels that in other diseases are associated with a risk for SAA amyloidosis. This secondary illness is characterized by formation and deposition of SAA amyloids in blood vessels, causing inflammation, thrombosis and sometimes organ failure, with symptoms resembling the multisystem inflammatory syndrome (MIS) observed in some COVID-19 survivors. Hence, in order to understand better the danger of SAA amyloidosis in the context of COVID-19 we have used molecular dynamic simulations to study the effect of a SARS-COV-2 protein segment on SAA amyloid formation. We find that presence of the nine-residue segment SK9, located on the Envelope protein, increases the propensity for SAA fibril formation by three mechanisms: it reduces the stability of the lipid-transporting hexamer shifting the equilibrium toward monomers, it increases the frequency of aggregation-prone configurations in the resulting chains, and it raises the stability of SAA fibrils. Our results therefore suggest that SAA amyloidosis -related pathologies are a long-term risk of SARS-COV-2 infections.


2016 ◽  
Vol 75 (Suppl 2) ◽  
pp. 703.2-703
Author(s):  
D.R. Gonçalves ◽  
R. Fonseca ◽  
F. Aguiar ◽  
T. Martins-Rocha ◽  
M. Bernardes ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Heba Abd Elkhalek ◽  
Neeven Abed ◽  
Omima Abdel Haie ◽  
Seham Goda

2021 ◽  
pp. 100080
Author(s):  
Martyna Maszota-Zieleniak ◽  
Annemarie Danielsson ◽  
Sergey A. Samsonov

2021 ◽  
Vol 22 (3) ◽  
pp. 1036
Author(s):  
Xuguang Lin ◽  
Kenichi Watanabe ◽  
Masahiro Kuragano ◽  
Kiyotaka Tokuraku

Amyloid A (AA) amyloidosis is a condition in which amyloid fibrils characterized by a linear morphology and a cross-β structure accumulate and are deposited extracellularly in organs, resulting in chronic inflammatory diseases and infections. The incidence of AA amyloidosis is high in humans and several animal species. Serum amyloid A (SAA) is one of the most important precursor amyloid proteins and plays a vital step in AA amyloidosis. Amyloid enhancing factor (AEF) serves as a seed for fibril formation and shortens the onset of AA amyloidosis sharply. In this study, we examined whether AEFs extracted and purified from five animal species (camel, cat, cattle, goat, and mouse) could promote mouse SAA (mSAA) protein aggregation in vitro using quantum-dot (QD) nanoprobes to visualize the aggregation. The results showed that AEFs shortened and promoted mSAA aggregation. In addition, mouse and cat AEFs showed higher mSAA aggregation-promoting activity than the camel, cattle, and goat AEFs. Interestingly, homology analysis of SAA in these five animal species revealed a more similar amino acid sequence homology between mouse and cat than between other animal species. Furthermore, a detailed comparison of amino acid sequences suggested that it was important to mSAA aggregation-promoting activity that the 48th amino acid was a basic residue (Lys) and the 125th amino acid was an acidic residue (Asp or Glu). These data imply that AA amyloidosis exhibits higher transmission activity among animals carrying genetically homologous SAA gene, and may provide a new understanding of the pathogenesis of amyloidosis.


Sign in / Sign up

Export Citation Format

Share Document