scholarly journals Nonlinear relationship between multimodal adrenergic responses and local dendritic activity in primary sensory cortices

2019 ◽  
Author(s):  
Yair Deitcher ◽  
Yonatan Leibner ◽  
Sara Kutzkel ◽  
Neta Zylbermann ◽  
Michael London

AbstractThe axonal projections of the adrenergic system to the neocortex, originating from the locus coeruleus (LC), form a dense network. These axons release the neuromodulator norepinephrine (NE) which is involved in many cognitive functions such as attention, arousal, and working memory. Using two-photon Ca2+ imaging of NE axons in the cortex of awake mice, we investigated what drives their phasic activity. We discovered that NE axons in the primary somatosensory cortex responded robustly and reliably to somatosensory stimulation. Surprisingly, the same axons also responded to stimuli of other modalities (auditory and visual). Similar responses to all three modalities were observed in the primary visual cortex as well. These results indicate that phasic responses of NE axons to sensory stimuli provide a robust multimodal signal. However, despite the robustness, we also noticed consistent variations in the data. For example, responses to whisker stimulations were larger than to auditory and visual stimulations in both the barrel and the visual cortices. To test whether the variations in NE axonal responses can carry behaviorally meaningful information, we trained mice in an associative auditory fear conditioning paradigm. We found that following conditioning the response of NE axons increased only for CS+, namely the signal undergoes experience-dependent plasticity and is specific to meaningful sounds. To test if variations in NE axonal responses can differentially affect the cortical microcircuit, we used dual-color two-photon Ca2+ imaging and studied the relationship between the activity of NE axons and local dendrites. We found dendritic Ca2+ signals in barrel cortex in response to auditory stimuli, but these responses were variable and unreliable. Strikingly, the probability of such dendritic signals increased nonlinearly with the Ca2+ signals of NE axons. Our results demonstrate that the phasic activity of the noradrenergic neurons may serve as a robust multimodal and plastic signal in sensory cortices. Furthermore, the variations in the NE axonal activity carry behaviorally meaningful signals and can predict the probability of local dendritic Ca2+ events.

2018 ◽  
Author(s):  
James P. Reynolds ◽  
Kaiyu Zheng ◽  
Dmitri A. Rusakov

All-optical registration of neuronal and astrocytic activities within the intact mammalian brain has improved significantly with recent advances in optical sensors and biophotonics. However, relating single-synapse release events and local astroglial responses to sensory stimuli in an intact animal has not hitherto been feasible. Here, we present a multiplexed multiphoton excitation imaging approach for assessing the relationship between presynaptic Ca2+ entry at thalamocortical axonal boutons and perisynaptic astrocytic Ca 2+ elevations, induced by whisker stimulation in the barrel cortex of C57BL/6 mice. We find that, unexpectedly, Ca 2+ elevations in the perisynaptic astrocytic regions consistently precede local presynaptic Ca 2+ signals during spontaneous brain activity associated with anaesthesia. The methods described here can be adapted to a variety of optical sensors and are compatible with experimental designs that might necessitate repeated sampling of single synapses over a longitudinal behavioural paradigm.


2019 ◽  
Vol 40 (4) ◽  
pp. 808-822 ◽  
Author(s):  
Maximilian Böhm ◽  
David Y Chung ◽  
Carlos A Gómez ◽  
Tao Qin ◽  
Tsubasa Takizawa ◽  
...  

Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.


2021 ◽  
Author(s):  
Simeng Gu ◽  
Wei Wang ◽  
Kuan Zhang ◽  
Rou Feng ◽  
Naling Li ◽  
...  

Abstract Different effects of astrocyte during sleep and awake have been extensively studied, especially for metabolic clearance by the glymphatic system, which works during sleep and stops working during waking states. However, how astrocytes contribute to modulation of sensory transmission during sleep and awake animals remain largely unknown. Recent advances in genetically encoded Ca2+ indicators have provided a wealth of information on astrocytic Ca2+, especially in their fine perisynaptic processes, where astrocytic Ca2+ most likely affects the synaptic function. Here we use two-photon microscopy to image astrocytic Ca2+ signaling in freely moving mice trained to run on a wheel in combination with in vivo whole-cell recordings to evaluate the role of astrocytic Ca2+ signaling in different behavior states. We found that there are two kinds of astrocytic Ca2+ signaling: a small long-lasting Ca2+ increase during sleep state and a sharp widespread but short-long-lasting Ca2+ spike when the animal was awake (fluorescence increases were 23.2 ± 14.4% for whisker stimulation at sleep state, compared with 73.3 ± 11.7% for at awake state, paired t-test, p < 0.01). The small Ca2+ transients decreased extracellular K+, hyperpolarized the neurons, and suppressed sensory transmission; while the large Ca2+ wave enhanced sensory input, contributing to reliable sensory transmission in aroused states. Locus coeruleus activation works as a switch between these two kinds of astrocytic Ca2+ elevation. Thus, we show that cortical astrocytes play an important role in processing of sensory input. These two types of events appear to have different pharmacological sources and may play a different role in facilitating the efficacy of sensory transmission.


2021 ◽  
Vol 118 (52) ◽  
pp. e2112212118
Author(s):  
Jiseok Lee ◽  
Joanna Urban-Ciecko ◽  
Eunsol Park ◽  
Mo Zhu ◽  
Stephanie E. Myal ◽  
...  

Immediate-early gene (IEG) expression has been used to identify small neural ensembles linked to a particular experience, based on the principle that a selective subset of activated neurons will encode specific memories or behavioral responses. The majority of these studies have focused on “engrams” in higher-order brain areas where more abstract or convergent sensory information is represented, such as the hippocampus, prefrontal cortex, or amygdala. In primary sensory cortex, IEG expression can label neurons that are responsive to specific sensory stimuli, but experience-dependent shaping of neural ensembles marked by IEG expression has not been demonstrated. Here, we use a fosGFP transgenic mouse to longitudinally monitor in vivo expression of the activity-dependent gene c-fos in superficial layers (L2/3) of primary somatosensory cortex (S1) during a whisker-dependent learning task. We find that sensory association training does not detectably alter fosGFP expression in L2/3 neurons. Although training broadly enhances thalamocortical synaptic strength in pyramidal neurons, we find that synapses onto fosGFP+ neurons are not selectively increased by training; rather, synaptic strengthening is concentrated in fosGFP− neurons. Taken together, these data indicate that expression of the IEG reporter fosGFP does not facilitate identification of a learning-specific engram in L2/3 in barrel cortex during whisker-dependent sensory association learning.


2020 ◽  
Vol 27 (4) ◽  
pp. 902-911
Author(s):  
V. G. Bagrov ◽  
D. M. Gitman ◽  
A. A. Shishmarev ◽  
A. J. D. Farias

Synchrotron radiation was originally studied by classical methods using the Liénard–Wiechert potentials of electric currents. Subsequently, quantum corrections to the classical formulas were studied, considering the emission of photons arising from electronic transitions between spectral levels, described in terms of the Dirac equation. In this paper, an intermediate approach is considered, in which electric currents generating the radiation are considered classically while the quantum nature of the radiation is taken into account exactly. Such an approximate approach may be helpful in some cases; it allows one to study one-photon and multi-photon radiation without complicating calculations using corresponding solutions of the Dirac equation. Here, exact quantum states of an electromagnetic field interacting with classical currents are constructed and their properties studied. With their help, the probability of photon emission by classical currents is calculated and relatively simple formulas for one-photon and multi-photon radiation are obtained. Using the specific circular electric current, the corresponding synchrotron radiation is calculated. The relationship between the obtained results and those known before are discussed, for example with the Schott formula, with Schwinger calculations, with one-photon radiation of scalar particles due to transitions between Landau levels, and with some previous results of calculating two-photon synchrotron radiation.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 117 ◽  
Author(s):  
Vicente Vento

Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays.


1979 ◽  
Vol 57 (2) ◽  
pp. 174-184 ◽  
Author(s):  
Y. C. Wong ◽  
H. C. Kwan ◽  
J. T. Murphy

In monkeys performing a handle-repositioning task involving primarily wrist flexion–extension (F–E) movements after a torque perturbation was delivered to the handle, single units were recorded extracellularly in the contralateral precentral cortex. Precentral neurons were identified by passive somatosensory stimulation, and were classified into five somatotopically organized populations. Based on electromyographic recordings, it was observed that flexors and extensors about the wrist joint were specifically involved in the repositioning of the handle, while many other muscles which act at the wrist and other forelimb joints were involved in the task in a supportive role. In precentral cortex, all neuronal responses observed were temporally correlated to both the sensory stimuli and the motor responses. Visual stimuli, presented simultaneously with torque perturbations, did not affect the early portion of cortical responses to such torque perturbations. In each of the five somatotopically organized neuronal populations, task-related neurons as well as task-unrelated ones were observed. A significantly larger proportion of wrist (F–E) neurons was related to the task, as compared with the other, nonwrist (F–E) populations. The above findings were discussed in the context of a hypothesis for the function of precentral cortex during voluntary limb movement in awake primates. This hypothesis incorporates a relationship between activities of populations of precentral neurons, defined with respect to their responses to peripheral events at or about single joints, and movements about the same joint.


2018 ◽  
Vol 12 ◽  
Author(s):  
Takayuki Yamashita ◽  
Angeliki Vavladeli ◽  
Aurélie Pala ◽  
Katia Galan ◽  
Sylvain Crochet ◽  
...  

2004 ◽  
Vol 13 (03n04) ◽  
pp. 475-479 ◽  
Author(s):  
JUN KAWAMATA ◽  
MASAHARU AKIBA ◽  
YOSHIO INAGAKI ◽  
TAKEHARU TANI ◽  
AKINORI HARADA

Two novel fluorene derivatives having cationic substituents were synthesized. Two-photon absorption (TPA) properties of the derivatives were evaluated using the fluorescence-based technique with a femtosecond pulse emitted from a Ti:sapphire laser. Maximum TPA cross-sections of the compounds were estimated from the TPA spectra. Based on the results, the relationship between the TPA cross-sections and the substituent effects of the derivatives were discussed.


2017 ◽  
Vol 28 (10) ◽  
pp. 1379-1388 ◽  
Author(s):  
Bryan Kaye ◽  
Tae Yeon Yoo ◽  
Peter J. Foster ◽  
Che-Hang Yu ◽  
Daniel J. Needleman

Time-resolvable quantitative measurements of polymer concentration are very useful to elucidate protein polymerization pathways. There are numerous techniques to measure polymer concentrations in purified protein solutions, but few are applicable in vivo. Here we develop a methodology combining microscopy and spectroscopy to overcome the limitations of both approaches for measuring polymer concentration in cells and cell extracts. This technique is based on quantifying the relationship between microscopy and spectroscopy measurements at many locations. We apply this methodology to measure microtubule assembly in tissue culture cells and Xenopus egg extracts using two-photon microscopy with FLIM measurements of FRET. We find that the relationship between FRET and two-photon intensity quantitatively agrees with predictions. Furthermore, FRET and intensity measurements change as expected with changes in acquisition time, labeling ratios, and polymer concentration. Taken together, these results demonstrate that this approach can quantitatively measure microtubule assembly in complex environments. This methodology should be broadly useful for studying microtubule nucleation and assembly pathways of other polymers.


Sign in / Sign up

Export Citation Format

Share Document