scholarly journals Analysis of single-cell gene pair coexpression landscapes by stochastic kinetic modeling reveals gene-pair interactions in development

2019 ◽  
Author(s):  
Cameron P. Gallivan ◽  
Honglei Ren ◽  
Elizabeth L. Read

ABSTRACTSingle-cell transcriptomics is advancing discovery of the molecular determinants of cell identity, while spurring development of novel data analysis methods. Stochastic mathematical models of gene regulatory networks help unravel the dynamic, molecular mechanisms underlying cell-to-cell heterogeneity, and can thus aid interpretation of heterogeneous cell-states revealed by single-cell measurements. However, integrating stochastic gene network models with single cell data is challenging. Here, we present a method for analyzing single-cell gene-pair coexpression patterns, based on biophysical models of stochastic gene expression and interaction dynamics. We first developed a high-computational-throughput approach to stochastic modeling of gene-pair coexpression landscapes, based on numerical solution of gene network Master Equations. We then comprehensively catalogued coexpression patterns arising from tens of thousands of gene-gene interaction models with different biochemical kinetic parameters and regulatory interactions. From the computed landscapes, we obtain a low-dimensional “shape-space” describing distinct types of coexpression patterns. We applied the theoretical results to analysis of published single cell RNA sequencing data and uncovered complex dynamics of coexpression among gene pairs during embryonic development. Our approach provides a generalizable framework for inferring evolution of gene-gene interactions during critical cell-state transitions.

2020 ◽  
Author(s):  
Turki Turki ◽  
Y-h. Taguchi

AbstractAnalyzing single-cell pancreatic data would play an important role in understanding various metabolic diseases and health conditions. Due to the sparsity and noise present in such single-cell gene expression data, analyzing various functions related to the inference of gene regulatory networks, derived from single-cell data, remains difficult, thereby posing a barrier to the deepening of understanding of cellular metabolism. Since recent studies have led to the reliable inference of single-cell gene regulatory networks (SCGRNs), the challenge of discriminating between SCGRNs has now arisen. By accurately discriminating between SCGRNs (e.g., distinguishing SCGRNs of healthy pancreas from those of T2D pancreas), biologists would be able to annotate, organize, visualize, and identify common patterns of SCGRNs for metabolic diseases. Such annotated SCGRNs could play an important role in speeding up the process of building large data repositories. In this study, we aimed to contribute to the development of a novel deep learning (DL) application. First, we generated a dataset consisting of 224 SCGRNs belonging to both T2D and healthy pancreas and made it freely available. Next, we chose seven DL architectures, including VGG16, VGG19, Xception, ResNet50, ResNet101, DenseNet121, and DenseNet169, trained each of them on the dataset, and checked prediction based on a test set. We evaluated the DL architectures on an HP workstation platform with a single NVIDIA GeForce RTX 2080Ti GPU. Experimental results on the whole dataset, using several performance measures, demonstrated the superiority of VGG19 DL model in the automatic classification of SCGRNs, derived from the single-cell pancreatic data.


2021 ◽  
Author(s):  
Zhibin Li ◽  
chengcheng Sun ◽  
Fei Wang ◽  
Xiran Wang ◽  
Jiacheng Zhu ◽  
...  

Background: Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. Methods: In this study, we compared the single-cell transcriptomes of 77 957 immune cells from 12 species using single-cell RNA-sequencing (scRNA-seq). Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. Results: The results revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular cross-talks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. Conclusions: This study is the first to provide a comprehensive analysis of the cross-species single-cell atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders


2017 ◽  
Author(s):  
Niranjan Srinivas ◽  
James Parkin ◽  
Georg Seelig ◽  
Erik Winfree ◽  
David Soloveichik

Chemistries exhibiting complex dynamics—from inorganic oscillators to gene regulatory networks—have been long known but either cannot be reprogrammed at will, or rely on the sophisticated chemistry underlying the central dogma. Can simpler molecular mechanisms, designed from scratch, exhibit the same range of behaviors? Abstract coupled chemical reactions have been proposed as a programming language for complex dynamics, along with their systematic implementation using short synthetic DNA molecules. We developed this technology for dynamical systems, identifying critical design principles and codifying them into a compiler automating the design process. Using this approach, we built an oscillator containing only DNA components, establishing that Watson-Crick base pairing interactions alone suffice for arbitrarily complex dynamics. Our results argue that autonomous molecular systems that interact with and control their chemical environment can be designed via molecular programming languages.


2020 ◽  
Author(s):  
Junpeng Zhang ◽  
Lin Liu ◽  
Taosheng Xu ◽  
Wu Zhang ◽  
Chunwen Zhao ◽  
...  

AbstractBackgroundExisting computational methods for studying miRNA regulation are mostly based on bulk miRNA and mRNA expression data. However, bulk data only allows the analysis of miRNA regulation regarding a group of cells, rather than the miRNA regulation unique to individual cells. Recent advance in single-cell miRNA-mRNA co-sequencing technology has opened a way for investigating miRNA regulation at single-cell level. However, as currently single-cell miRNA-mRNA co-sequencing data is just emerging and only available at small-scale, there is a strong need of novel methods to exploit existing single-cell data for the study of cell-specific miRNA regulation.ResultsIn this work, we propose a new method, CSmiR (Cell-Specific miRNA regulation) to use single-cell miRNA-mRNA co-sequencing data to identify miRNA regulatory networks at the resolution of individual cells. We apply CSmiR to the miRNA-mRNA co-sequencing data in 19 K562 single-cells to identify cell-specific miRNA-mRNA regulatory networks to understand miRNA regulation in each K562 single-cell. By analyzing the obtained cell-specific miRNA-mRNA regulatory networks, we observe that the miRNA regulation in each K562 single-cell is unique. Moreover, we conduct detailed analysis on the cell-specific miRNA regulation associated with the miR-17/92 family as a case study. Finally, through exploring cell-cell similarity matrix characterized by cell-specific miRNA regulation, CSmiR provides a novel strategy for clustering single-cells to help understand cell-cell crosstalk.ConclusionsTo the best of our knowledge, CSmiR is the first method to explore miRNA regulation at a single-cell resolution level, and we believe that it can be a useful method to enhance the understanding of cell-specific miRNA regulation.


Author(s):  
Boxun Li ◽  
Gary C. Hon

As we near a complete catalog of mammalian cell types, the capability to engineer specific cell types on demand would transform biomedical research and regenerative medicine. However, the current pace of discovering new cell types far outstrips our ability to engineer them. One attractive strategy for cellular engineering is direct reprogramming, where induction of specific transcription factor (TF) cocktails orchestrates cell state transitions. Here, we review the foundational studies of TF-mediated reprogramming in the context of a general framework for cell fate engineering, which consists of: discovering new reprogramming cocktails, assessing engineered cells, and revealing molecular mechanisms. Traditional bulk reprogramming methods established a strong foundation for TF-mediated reprogramming, but were limited by their small scale and difficulty resolving cellular heterogeneity. Recently, single-cell technologies have overcome these challenges to rapidly accelerate progress in cell fate engineering. In the next decade, we anticipate that these tools will enable unprecedented control of cell state.


2019 ◽  
Author(s):  
Soumya Korrapati ◽  
Ian Taukulis ◽  
Rafal Olszewski ◽  
Madeline Pyle ◽  
Shoujun Gu ◽  
...  

AbstractThe stria vascularis (SV) generates the endocochlear potential (EP) in the inner ear and is necessary for proper hair cell mechanotransduction and hearing. While channels belonging to SV cell types are known to play crucial roles in EP generation, relatively little is known about gene regulatory networks that underlie the ability of the SV to generate and maintain the EP. Using single cell and single nucleus RNA-sequencing, we identify and validate known and rare cell populations in the SV. Furthermore, we establish a basis for understanding molecular mechanisms underlying SV function by identifying potential gene regulatory networks as well as druggable gene targets. Finally, we associate known deafness genes with adult SV cell types. This work establishes a basis for dissecting the genetic mechanisms underlying the role of the SV in hearing and will serve as a basis for designing therapeutic approaches to hearing loss related to SV dysfunction.


2019 ◽  
Author(s):  
Heyrim Cho ◽  
Russell C. Rockne

AbstractSingle-cell sequencing technologies have revolutionized molecular and cellular biology and stimulated the development of computational tools to analyze the data generated from these technology platforms. However, despite the recent explosion of computational analysis tools, relatively few mathematical models have been developed to utilize these data. Here we compare and contrast two approaches for building mathematical models of cell state-transitions with single-cell RNA-sequencing data with hematopoeisis as a model system; by solving partial differential equations on a graph representing discrete cell state relationships, and by solving the equations on a continuous cell state-space. We demonstrate how to calibrate model parameters from single or multiple time-point single-cell sequencing data, and examine the effects of data processing algorithms on the model calibration and predictions. As an application of our approach, we demonstrate how the calibrated models may be used to mathematically perturb normal hematopoeisis to simulate, predict, and study the emergence of novel cell types during the pathogenesis of acute myeloid leukemia. The mathematical modeling framework we present is general and can be applied to study cell state-transitions in any single-cell genome sequencing dataset.Author summaryHere we compare and contrast graph- and continuum-based approaches for constructing mathematical models of cell state-transitions using single-cell RNA-sequencing data. Using two publicly available datasets, we demonstrate how to calibrate mathematical models of hematopoeisis and how to use the models to predict dynamics of acute myeloid leukemia pathogenesis by mathematically perturbing the process of cellular proliferation and differentiation. We apply these modeling approaches to study the effects of perturbing individual or sets of genes in subsets of cells, or by modeling the dynamics of cell state-transitions directly in a reduced dimensional space. We examine the effects of different graph abstraction and trajectory inference algorithms on calibrating the models and the subsequent model predictions. We conclude that both the graph- and continuum-based modeling approaches can be equally well calibrated to data and discuss situations in which one method may be preferable over the other. This work presents a general mathematical modeling framework, applicable to any single-cell sequencing dataset where cell state-transitions are of interest.


2021 ◽  
Author(s):  
Abdullah Karaaslanli ◽  
SATABDI SAHA ◽  
Selin Aviyente ◽  
Tapabrata Maiti

Characterizing the underlying topology of gene regulatory networks is one of the fundamental problems of systems biology. Ongoing developments in high throughput sequencing technologies has made it possible to capture the expression of thousands of genes at the single cell resolution. However, inherent cellular heterogeneity and high sparsity of the single cell datasets render void the application of regular Gaussian assumptions for constructing gene regulatory networks. Additionally, most algorithms aimed at single cell gene regulatory network reconstruction, estimate a single network ignoring group-level (cell-type) information present within the datasets. To better characterize single cell gene regulatory networks under different but related conditions we propose the joint estimation of multiple networks using multiview graph learning (mvGL). The proposed method is developed based on recent works in graph signal processing (GSP) for graph learning, where graph signals are assumed to be smooth over the unknown graph structure. Graphs corresponding to the different datasets are regularized to be similar to each other through a learned consensus graph. We further kernelize mvGL with the kernel selected to suit the structure of single cell data. An efficient algorithm based on prox-linear block coordinate descent is used to optimize mvGL. We study the performance of mvGL using synthetic data generated with a diverse set of parameters. We further show that mvGL successfully identifies well-established regulators in a mouse embryonic stem cell differentiation study and a cancer clinical study of medulloblastoma.


Sign in / Sign up

Export Citation Format

Share Document