scholarly journals Cortical contraction drives the 3D patterning of epithelial cell surfaces

2019 ◽  
Author(s):  
Aaron P. van Loon ◽  
Ivan S. Erofeev ◽  
Ivan V. Maryshev ◽  
Andrew B. Goryachev ◽  
Alvaro Sagasti

ABSTRACTCellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures projecting from the apical surfaces of zebrafish skin cells that are arranged in labyrinthine patterns. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A non-muscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex; inhibiting NMII demonstrated that contractions are required for apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex patterns 3D cell surfaces.SUMMARYMicroridges, elongated 3D protrusions arranged in maze-like patterns on zebrafish skin cells, form by the accretion of simple precursor projections. Modeling and in vivo experiments showed that cortical contractions promote the coalescence of precursors into microridges by reducing membrane tension.

2020 ◽  
Vol 219 (3) ◽  
Author(s):  
Aaron P. van Loon ◽  
Ivan S. Erofeev ◽  
Ivan V. Maryshev ◽  
Andrew B. Goryachev ◽  
Alvaro Sagasti

Cellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures that are arranged in maze-like patterns on the apical surfaces of zebrafish skin cells. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A nonmuscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex, and inhibiting NMII blocked apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex can pattern 3D cell surfaces.


2021 ◽  
Author(s):  
Hanqing Guo ◽  
Michael Swan ◽  
Shicheng Huang ◽  
Bing He

Apical constriction driven by non-muscle myosin II (″myosin″) provides a well-conserved mechanism to mediate epithelial folding. It remains unclear how contractile forces near the apical surface of a cell sheet drive out-of-plane bending of the sheet and whether myosin contractility is required throughout folding. By optogenetic-mediated acute inhibition of myosin, we find that during Drosophila mesoderm invagination, myosin contractility is critical to prevent tissue relaxation during the early, ″priming″ stage of folding but is dispensable for the actual folding step after the tissue passes through a stereotyped transitional configuration, suggesting that the mesoderm is mechanically bistable during gastrulation. Combining computer modeling and experimental measurements, we show that the observed mechanical bistability arises from an in-plane compression from the surrounding ectoderm, which promotes mesoderm invagination by facilitating a buckling transition. Our results indicate that Drosophila mesoderm invagination requires a joint action of local apical constriction and global in-plane compression to trigger epithelial buckling.


2021 ◽  
Author(s):  
Miho Matsuda ◽  
Chih-Wen Chu ◽  
Sergei S Sokol

The reduction of the apical domain, or apical constriction, is a process that occurs in a single cell or is coordinated in a group of cells in the epithelium. Coordinated apical constriction is particularly important when the epithelium is undergoing dynamic morphogenetic events such as furrow or tube formation. However, the underlying mechanisms remain incompletely understood. Here we show that Lim only protein 7 (Lmo7) is a novel activator of apical constriction in the Xenopus superficial ectoderm, which coordinates actomyosin contractility in a group of cells during epithelial morphogenesis. Like other apical constriction regulators, Lmo7 requires the activation of the Rho-Rock-Myosin II pathway to induce apical constriction. However, instead of increasing the phosphorylation of myosin light chain (MLC), Lmo7 binds muscle myosin II heavy chain A (NMIIA) and increases its association with actomyosin bundles at adherens junctions (AJs). Lmo7 overexpression modulates the subcellular distribution of Wtip, a tension marker at AJs, suggesting that Lmo7 generates mechanical forces at AJs. We propose that Lmo7 increases actomyosin contractility at AJs by promoting the formation of actomyosin bundles.


Author(s):  
Sundar Ram Naganathan ◽  
Marko Popovic ◽  
Andrew C Oates

The body axis of vertebrate embryos is periodically segmented into bilaterally symmetric pairs of somites. The anteroposterior (AP) length of somites, their position and left-right symmetry are thought to be molecularly determined prior to somite morphogenesis. Here we discover that in zebrafish embryos, initial somite AP lengths and positions are imprecise and consequently many somite pairs form left-right asymmetrically. Strikingly, these imprecisions are not left unchecked and we find that AP lengths adjust within an hour after somite formation, thereby increasing morphological symmetry. We find that AP length adjustments result entirely from changes in somite shape without change in somite volume, with changes in AP length being compensated by corresponding changes in mediolateral length. The AP adjustment mechanism is facilitated by somite surface tension, which we show by comparing in vivo experiments and in vitro single-somite explant cultures with a mechanical model. Length adjustment is inhibited by perturbation of Integrin and Fibronectin, consistent with their involvement in surface tension. In contrast, the adjustment mechanism is unaffected by perturbations to the segmentation clock, thus revealing a distinct process that determines morphological segment lengths. We propose that tissue surface tension provides a general mechanism to adjust shapes and ensure precision and symmetry of tissues in developing embryos.


2018 ◽  
Author(s):  
Deqing Kong ◽  
Zhiyi Lv ◽  
Matthias Häring ◽  
Fred Wolf ◽  
Joerg Grosshans

The spatial and temporal dynamics of cell contractility plays a key role in tissue morphogenesis, wound healing and cancer invasion. Here we report a simple, single cell resolution, optochemical method to induce minute-scale cell contractions in vivo during morphogenesis. We employed the photolabile Ca2+ chelator o-nitrophenyl EGTA to induce bursts of intracellular free Ca2+ by laser photolysis. Ca2+ bursts appear within seconds and are restricted to individual target cells. Cell contraction reliably followed within a minute, to about half of the cross-sectional area. Increased Ca2+ levels and contraction were reversible and the target cells further participated in tissue morphogenesis. Depending on Rho kinase (Rok) activity but not RhoGEF2, cell contractions are paralleled with non-muscle myosin-II accumulation in the apico-medial cortex, indicating that Ca2+ bursts trigger non-muscle myosin II activation. Our approach can be easily adapted to many experimental systems and species, as no specific genetic elements are required and a widely used reagent is employed.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Claudia G Vasquez ◽  
Sarah M Heissler ◽  
Neil Billington ◽  
James R Sellers ◽  
Adam C Martin

Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos.


2021 ◽  
Author(s):  
Jingjing Ding ◽  
Chao Wang ◽  
Qiaodong Wei ◽  
Shoukang Du ◽  
Xiaobo Gong ◽  
...  

AbstractAs cells enter mitosis, cell cortex contraction generates surface tension to establish a geometry feasible for division in a physically confined environment. Cell surface tension rises in prophase and continues to stay constant during metaphase to support mitosis. How the cell surface tension is maintained throughout mitosis is not well explored. We show that the cell surface tension is actively maintained by a mechanosensitive RhoA pathway at the cell cortex during mitosis. Mechanical activation of RhoA leads to non-muscle myosin IIB (NMIIB) stabilization and mechanosensitive accumulation at the cell cortex via Rho kinase (ROCK) regulation of the NMIIB head domain. Interestingly, when the NMIIB tail domain regulation is perturbed, the NMIIB has reduced ability to generate tension but could still support mitotic cells to withstand compressive stress by undergoing mechanosensitive accumulation at the cell cortex. Thus, mechanical RhoA activation drives NMIIB mechanoresponse via its head domain regulation to maintain cell surface tension during mitosis.


2021 ◽  
pp. mbc.E21-05-0258
Author(s):  
Aaron P. van Loon ◽  
Ivan S. Erofeev ◽  
Andrew B. Goryachev ◽  
Alvaro Sagasti

Actin-based protrusions vary in morphology, stability, and arrangement on cell surfaces. Microridges are laterally-elongated protrusions on mucosal epithelial cells, where they form evenly spaced, maze-like patterns that dynamically remodel by fission and fusion. To characterize how microridges form their highly ordered, subcellular patterns and investigate the mechanisms driving fission and fusion, we imaged microridges in the maturing skin of zebrafish larvae. After their initial development, microridge spacing and alignment became increasingly well ordered. Imaging F-actin and Non-Muscle Myosin II (NMII) revealed that microridge fission and fusion were associated with local NMII activity in the apical cortex. Inhibiting NMII blocked fission and fusion rearrangements, reduced microridge density, and altered microridge spacing. High-resolution imaging allowed us to image individual NMII minifilaments in the apical cortex of cells in live animals, revealing that minifilaments are tethered to protrusions and often connect adjacent microridges. NMII minifilaments connecting the ends of two microridges fused them together, whereas minifilaments oriented perpendicular to microridges severed them or pulled them closer together. These findings demonstrate that as cells mature, cortical NMII activity orchestrates a remodeling process that creates an increasingly orderly microridge arrangement. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text]


Sign in / Sign up

Export Citation Format

Share Document