scholarly journals In vivo optochemical control of cell contractility at single cell resolution by Ca2+ induced myosin activation

2018 ◽  
Author(s):  
Deqing Kong ◽  
Zhiyi Lv ◽  
Matthias Häring ◽  
Fred Wolf ◽  
Joerg Grosshans

The spatial and temporal dynamics of cell contractility plays a key role in tissue morphogenesis, wound healing and cancer invasion. Here we report a simple, single cell resolution, optochemical method to induce minute-scale cell contractions in vivo during morphogenesis. We employed the photolabile Ca2+ chelator o-nitrophenyl EGTA to induce bursts of intracellular free Ca2+ by laser photolysis. Ca2+ bursts appear within seconds and are restricted to individual target cells. Cell contraction reliably followed within a minute, to about half of the cross-sectional area. Increased Ca2+ levels and contraction were reversible and the target cells further participated in tissue morphogenesis. Depending on Rho kinase (Rok) activity but not RhoGEF2, cell contractions are paralleled with non-muscle myosin-II accumulation in the apico-medial cortex, indicating that Ca2+ bursts trigger non-muscle myosin II activation. Our approach can be easily adapted to many experimental systems and species, as no specific genetic elements are required and a widely used reagent is employed.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Claudia G Vasquez ◽  
Sarah M Heissler ◽  
Neil Billington ◽  
James R Sellers ◽  
Adam C Martin

Non-muscle cell contractility is critical for tissues to adopt shape changes. Although, the non-muscle myosin II holoenzyme (myosin) is a molecular motor that powers contraction of actin cytoskeleton networks, recent studies have questioned the importance of myosin motor activity cell and tissue shape changes. Here, combining the biochemical analysis of enzymatic and motile properties for purified myosin mutants with in vivo measurements of apical constriction for the same mutants, we show that in vivo constriction rate scales with myosin motor activity. We show that so-called phosphomimetic mutants of the Drosophila regulatory light chain (RLC) do not mimic the phosphorylated RLC state in vitro. The defect in the myosin motor activity in these mutants is evident in developing Drosophila embryos where tissue recoil following laser ablation is decreased compared to wild-type tissue. Overall, our data highlights that myosin activity is required for rapid cell contraction and tissue folding in developing Drosophila embryos.


2016 ◽  
Vol 310 (7) ◽  
pp. H861-H872 ◽  
Author(s):  
Yujia Wang ◽  
Zenghui Wu ◽  
Eric Thorin ◽  
Johanne Tremblay ◽  
Julie L. Lavoie ◽  
...  

EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions, although their function in blood pressure (BP) control has not been studied in detail. In the present study, we report that Efnb3 gene knockout (KO) led to increased BP in female but not male mice. Vascular smooth muscle cells (VSMCs) were target cells for EFNB3 function in BP regulation. The deletion of EFNB3 augmented contractility of VSMCs from female but not male KO mice, compared with their wild-type (WT) counterparts. Estrogen augmented VSMC contractility while testosterone reduced it in the absence of EFNB3, although these sex hormones had no effect on the contractility of VSMCs from WT mice. The effect of estrogen on KO VSMC contractility was via a nongenomic pathway involving GPER, while that of testosterone was likely via a genomic pathway, according to VSMC contractility assays and GPER knockdown assays. The sex hormone-dependent contraction phenotypes in KO VSMCs were reflected in BP in vivo. Ovariectomy rendered female KO mice normotensive. At the molecular level, EFNB3 KO in VSMCs resulted in reduced myosin light chain kinase phosphorylation, an event enhancing sensitivity to Ca2+ flux in VSMCs. Our investigation has revealed previously unknown EFNB3 functions in BP regulation and show that EFNB3 might be a hypertension risk gene in certain individuals.


2021 ◽  
Author(s):  
Anja Schmidt ◽  
Long Li ◽  
Zhiyi Lv ◽  
Shuling Yan ◽  
Jörg Großhans

Rho signaling with its major targets the formin Dia, Rho kinase (Rok) and non-muscle myosin II control turnover, amount and contractility of actomyosin. Much less investigated has been a potential function for the distribution of F-actin plus and minus ends. In syncytial Drosophila embryos Rho1 signaling is high between actin caps, i. e. the cortical intercap region. Capping protein binds to free plus ends of F-actin to prevent elongation of the filament. Capping protein has served as a marker to visualize the distribution of F-actin plus ends in cells and in vitro. Here, we probed the distribution of plus ends with capping protein in syncytial Drosophila embryos. We found that Capping proteins are specifically enriched in the intercap region similar to Dia and MyoII but distinct from overall F-actin. The intercap enrichment of Capping protein was impaired in dia mutants and embryos, in which Rok and MyoII activation was inhibited. Our observations reveal that Dia and Rok/MyoII control Capping protein enrichment and support a model that Dia and Rok/MyoII control the organization of cortical actin cytoskeleton downstream of Rho1 signaling.


2019 ◽  
Vol 218 (8) ◽  
pp. 2743-2761 ◽  
Author(s):  
Daniel Krueger ◽  
Theresa Quinkler ◽  
Simon Arnold Mortensen ◽  
Carsten Sachse ◽  
Stefano De Renzis

Contraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development. In vitro studies suggest that contractility also depends on the geometrical organization of actin filaments. Here we analyze the function of actomyosin network topology in vivo using optogenetic stimulation of myosin-II in Drosophila embryos. We show that early during cellularization, hexagonally arrayed actomyosin fibers are resilient to myosin-II activation. Actomyosin fibers then acquire a ring-like conformation and become contractile and sensitive to myosin-II. This transition is controlled by Bottleneck, a Drosophila unique protein expressed for only a short time during early cellularization, which we show regulates actin bundling. In addition, it requires two opposing actin cross-linkers, Filamin and Fimbrin. Filamin acts synergistically with Bottleneck to facilitate hexagonal patterning, while Fimbrin controls remodeling of the hexagonal network into contractile rings. Thus, actin cross-linking regulates the spatio-temporal organization of actomyosin contraction in vivo, which is critical for tissue morphogenesis.


Parasitology ◽  
1997 ◽  
Vol 115 (7) ◽  
pp. 127-140 ◽  
Author(s):  
G. FÜST

The author has summarized the history of discovery, the mechanism and the clinical significance of antibody-dependent enhancement (ADE) of HIV infection. ADE has two major forms: (a) complement-mediated antibody-dependent enhancement (C-ADE) and (b) complement-independent Fc receptor-dependent ADE (FcR-ADE). The most important epitope responsible for the development of C-ADE-mediating antibodies is present in the immunodominant region of gp41 while antibodies mediating FcR-ADE react mainly with V3 loop of gp120. There are at least three fundamentally different hypotheses for the explanation of ADE in vitro: (a) increased adhesion of HIV-antibody-(complement) complexes to FcR or complement receptor carrying cells; (b) facilitation of HIV-target cell fusion by complement fragment deposited on the HIV-virions and (c) complement activation products may have a non-specific stimulatory effect on target cells resulting in enhanced virus production. FcR-ADE and C-ADE have been measured in vitro mostly by using FcR-carrying and complement receptor-carrying cell lines, respectively; no efforts have been made to standardize these methods. Several data support the possible clinical significance of FcR-ADE and C-ADE: (a) Cross-sectional and longitudinal studies indicate a correlation between the amounts of FcR-ADE and C-ADE-mediating antibodies and clinical, immunological and virological progression of the HIV-disease; (b) ADE may facilitate maternal–infant HIV-1 transmission; (c) According to experiments in animal models, ADE are present and may modify the course of SIV (simian immunodeficiency) infection as well. The author raises a new hypothesis on the mechanism of the in vivo effect of C-ADE. According to the hypothesis, C-ADE-mediating antibodies exert their effect through enhancement of HIV propagation and consequent facilitation of the progression of HIV disease. Finally, according to observations from animal experiments and human clinical trials it cannot be excluded that ADE-mediating antibodies may develop, diminish the beneficial effect or may be harmful in volunteers vaccinated with HIV-1 candidate vaccines.


EMBO Reports ◽  
2019 ◽  
Vol 20 (12) ◽  
Author(s):  
Deqing Kong ◽  
Zhiyi Lv ◽  
Matthias Häring ◽  
Benjamin Lin ◽  
Fred Wolf ◽  
...  

2019 ◽  
Author(s):  
Aaron P. van Loon ◽  
Ivan S. Erofeev ◽  
Ivan V. Maryshev ◽  
Andrew B. Goryachev ◽  
Alvaro Sagasti

ABSTRACTCellular protrusions create complex cell surface topographies, but biomechanical mechanisms regulating their formation and arrangement are largely unknown. To study how protrusions form, we focused on the morphogenesis of microridges, elongated actin-based structures projecting from the apical surfaces of zebrafish skin cells that are arranged in labyrinthine patterns. Microridges form by accreting simple finger-like precursors. Live imaging demonstrated that microridge morphogenesis is linked to apical constriction. A non-muscle myosin II (NMII) reporter revealed pulsatile contractions of the actomyosin cortex; inhibiting NMII demonstrated that contractions are required for apical constriction and microridge formation. A biomechanical model suggested that contraction reduces surface tension to permit the fusion of precursors into microridges. Indeed, reducing surface tension with hyperosmolar media promoted microridge formation. In anisotropically stretched cells, microridges formed by precursor fusion along the stretch axis, which computational modeling explained as a consequence of stretch-induced cortical flow. Collectively, our results demonstrate how contraction within the 2D plane of the cortex patterns 3D cell surfaces.SUMMARYMicroridges, elongated 3D protrusions arranged in maze-like patterns on zebrafish skin cells, form by the accretion of simple precursor projections. Modeling and in vivo experiments showed that cortical contractions promote the coalescence of precursors into microridges by reducing membrane tension.


2020 ◽  
Vol 6 (31) ◽  
pp. eaba6505
Author(s):  
Emily O. Wisniewski ◽  
Panagiotis Mistriotis ◽  
Kaustav Bera ◽  
Robert A. Law ◽  
Jitao Zhang ◽  
...  

How migrating cells differentially adapt and respond to extracellular track geometries remains unknown. Using intravital imaging, we demonstrate that invading cells exhibit dorsoventral (top-to-bottom) polarity in vivo. To investigate the impact of dorsoventral polarity on cell locomotion through different confining geometries, we fabricated microchannels of fixed cross-sectional area, albeit with distinct aspect ratios. Vertical confinement, exerted along the dorsoventral polarity axis, induces myosin II–dependent nuclear stiffening, which results in RhoA hyperactivation at the cell poles and slow bleb-based migration. In lateral confinement, directed perpendicularly to the dorsoventral polarity axis, the absence of perinuclear myosin II fails to increase nuclear stiffness. Hence, cells maintain basal RhoA activity and display faster mesenchymal migration. In summary, by integrating microfabrication, imaging techniques, and intravital microscopy, we demonstrate that dorsoventral polarity, observed in vivo and in vitro, directs cell responses in confinement by spatially tuning RhoA activity, which controls bleb-based versus mesenchymal migration.


2019 ◽  
Author(s):  
Dogukan Mizrak ◽  
N. Sumru Bayin ◽  
Jinzhou Yuan ◽  
Zhouzerui Liu ◽  
Radu Suciu ◽  
...  

SUMMARYNeural stem cells (NSCs) and their progeny reside in specialized niches in the adult mammalian brain where they generate new neurons and glia throughout life. Adult NSCs of the ventricular-subventricular zone (V-SVZ) are prone to rapid exhaustion; thus timely, context-dependent neurogenesis demands adaptive signaling among the vast number of neighboring progenitors nestled between the ventricular surface and nearby blood vessels. To dissect adult neuronal lineage progression and regulation, we profiled >56,000 V-SVZ and olfactory bulb (OB) cells by single-cell RNA-sequencing (scRNA-seq). Our analyses revealed the diversity of V-SVZ-derived OB neurons, the temporal dynamics of lineage progression, and a key intermediate NSC population enriched for expression of Notum, which encodes a secreted WNT antagonist. Single Cell Optical Phenotyping and Expression (SCOPE-seq), a technology linking live cell imaging with scRNA-seq, uncovered dynamic control of cell size concomitant with NSC differentiation with Notum+ NSCs at a critical size poised for cell division, and a preference of NOTUM surface binding to neuronal precursors with active WNT signaling. Finally, in vivo pharmacological inhibition of NOTUM significantly expanded neuronal precursor pools in the V-SVZ. Our findings highlight a critical regulatory state during NSC activation marked by NOTUM, a secreted enzyme that ensures efficient neurogenesis by preventing WNT signaling activation in NSC progeny.


Sign in / Sign up

Export Citation Format

Share Document