scholarly journals Polyjet 3D printing of tissue-mimicking materials: how well can 3D printed synthetic myocardium replicate mechanical properties of organic myocardium?

2019 ◽  
Author(s):  
Leah Severseike ◽  
Vania Lee ◽  
Taycia Brandon ◽  
Chris Bakken ◽  
Varun Bhatia

AbstractAnatomical 3-D printing has potential for many uses in education, research and development, implant training, and procedure planning. Conventionally, the material properties of 3D printed anatomical models have often been similar only in form and not in mechanical response compared to biological tissue. The new Digital Anatomy material from Stratasys utilizes composite printed materials to more closely mimic the mechanical properties of tissue. Work was done to evaluate Digital Anatomy myocardium under axial loading for comparison with porcine myocardium regarding puncture, compliance, suturing, and cutting performance.In general, the Digital Anatomy myocardium showed promising comparisons to porcine myocardium. For compliance testing, the Digital Anatomy was either within the same range as the porcine myocardium or stiffer. Specifically, for use conditions involving higher stress concentrations or smaller displacements, Digital Anatomy was stiffer. Digital Anatomy did not perform as strongly as porcine myocardium when evaluating suture and cutting properties. The suture tore through the printed material more easily and had higher friction forces both during needle insertion and cutting. Despite these differences, the new Digital Anatomy myocardium material was much closer to the compliance of real tissue than other 3D printed materials. Furthermore, unlike biological tissue, Digital Anatomy provided repeatability of results. For tests such as cyclic compression, the material showed less than two percent variation in results between trials and between parts, resulting in lower variability than tissue. Despite some limitations, the myocardium Digital Anatomy material can be used to configure structures with similar mechanical properties to porcine myocardium in a repeatable manner, making this a valuable research tool.

Author(s):  
Xuefeng Zhu ◽  
Longkun Xu ◽  
Xiaochen Liu ◽  
Jinting Xu ◽  
Ping Hu ◽  
...  

Kagome honeycomb structure is proved to incorporate excellent mechanical and actuation performances due to its special configuration. However, until now, the mechanical properties of 3D printed Kagome honeycomb have not been investigated. Hence, the objective of this work is to explore some mechanical properties of 3D-printed Kagome honeycomb structures such as elastic properties, buckling, and so on. In this paper, the analytical formulas of some mechanical properties of Kagome honeycombs made of 3D-printed materials are given. Effective elastic moduli such as Young's modulus, shear modulus, and Poisson's ratio of orthotropic Kagome honeycombs under in-plane compression and shear are derived in analytical forms. By these formulas, we investigate the relationship of the elastic moduli, the relative density, and the shape anisotropy–ratio of 3D-printed Kagome honeycomb. By the uniaxial tensile testing, the effective Young's moduli of 3D printed materials in the lateral and longitudinal directions are obtained. Then, by the analytical formulas and the experimental results, we can predict the maximum Young's moduli and the maximum shear modulus of 3D-printed Kagome honeycombs. The isotropic behavior of 3D-printed Kagome honeycombs is investigated. We also derived the equations of the initial yield strength surfaces and the buckling surfaces. We found that the sizes of the buckling surfaces of 3D printed material are smaller than that of isotropic material. The efficiency of the presented analytical formulas is verified through the tensile testing of 3D printed Kagome honeycomb specimens.


2016 ◽  
Vol 8 (26) ◽  
pp. 16961-16966 ◽  
Author(s):  
Joshua R. Davidson ◽  
Gayan A. Appuhamillage ◽  
Christina M. Thompson ◽  
Walter Voit ◽  
Ronald A. Smaldone

2021 ◽  
Vol 1208 (1) ◽  
pp. 012019
Author(s):  
Adi Pandzic ◽  
Damir Hodzic

Abstract One of the advantages provided by fused deposition modelling (FDM) 3D printing technology is the manufacturing of product materials with infill structure, which provides advantages such as reduced production time, product weight and even the final price. In this paper, the tensile mechanical properties, tensile strength and elastic modulus, of PLA, Tough PLA and PC FDM 3D printed materials with the infill structure were analysed and compared. Also, the influence of infill pattern on tensile properties was analysed. Material testing were performed according to ISO 527-2 standard. All results are statistically analysed and results showed that infill pattern have influence on tensile mechanical properties for all three materials.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rafael Moreno ◽  
Diego Carou ◽  
Daniel Carazo-Álvarez ◽  
Munish Kumar Gupta

Purpose 3D printing is gaining attention in the medical sector for the development of customized solutions for a wide range of applications such as temporary external implants. The materials used for the manufacturing process are critical, as they must provide biocompatibility and adequate mechanical properties. This study aims to evaluate and model the influence of the printing parameters on the mechanical properties of two biocompatible materials. Design/methodology/approach In this study, the mechanical properties of 3D-printed specimens of two biocompatible materials (ABS medical and PLActive) were evaluated. The influence of several printing parameters (infill density, raster angle and layer height) was studied and modelled on three response variables: ultimate tensile strength, deformation at the ultimate tensile strength and Young’s modulus. Therefore, statistical models were developed to predict the mechanical responses based on the selected printing parameters. Findings The used methodology allowed obtaining compact models that show good fit, particularly, for both the ultimate tensile strength and Young’s modulus. Regarding the deformation at ultimate tensile strength, this output was found to be influenced by more factors and interactions, resulting in a slightly less precise model. In addition, the influence of the printing parameters was discussed in the work. Originality/value The presented paper proposed the use of statistical models to select the printing parameters (infill density, raster angle and layer height) to optimize the mechanical response of external medical aids. The models will help users, researchers and firms to develop optimized solutions that can reduce material costs and printing time but guaranteeing the mechanical response of the parts.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 827 ◽  
Author(s):  
Utkarsh Mangal ◽  
Ji-Young Seo ◽  
Jaehun Yu ◽  
Jae-Sung Kwon ◽  
Sung-Hwan Choi

The creation of clinically patient-specific 3D-printed biomedical appliances that can withstand the physical stresses of the complex biological environment is an important objective. To that end, this study aimed to evaluate the efficacy of aminated nanodiamonds (A-NDs) as nanofillers in biological-grade acrylate-based 3D-printed materials. Solution-based mixing was used to incorporate 0.1 wt% purified nanodiamond (NDs) and A-NDs into UV-polymerized poly(methyl methacrylate) (PMMA). The ND and A-ND nanocomposites showed significantly lower water contact angles (p < 0.001) and solubilities (p < 0.05) compared to those of the control. Both nanocomposites showed markedly improved mechanical properties, with the A-ND-containing nanocomposite showing a statistically significant increase in the flexural strength (p < 0.001), elastic modulus (p < 0.01), and impact strength (p < 0.001) compared to the control and ND-containing groups. The Vickers hardness and wear-resistance values of the A-ND-incorporated material were significantly higher (p < 0.001) than those of the control and were comparable to the values observed for the ND-containing group. In addition, trueness analysis was used to verify that 3D-printed orthodontic brackets prepared with the A-ND- and ND-nanocomposites exhibited no significant differences in accuracy. Hence, we conclude that the successful incorporation of 0.1 wt% A-ND in UV-polymerized PMMA resin significantly improves the mechanical properties of the resin for the additive manufacturing of precisive 3D-printed biomedical appliances.


2020 ◽  
Author(s):  
Vania Lee ◽  
Leah Severseike ◽  
Chris Bakken ◽  
Emily Bermel ◽  
Varun Bhatia

AbstractCurrent anatomical 3D printing has been primarily used for education, training, and surgical planning purposes. This is largely due to the models being printed in materials which excel at replicating macro-level organic geometries; however, these materials have the drawback of unrealistic mechanical behavior and system properties compared to biological tissue. The new Digital Anatomy (DA) family of materials from Stratasys utilizes composite printed materials to more closely mimic mechanical behavior of biological tissue, potentially allowing more realistic models for design evaluation. Various experimental DA Solid Organ (SO) configurations were quantitatively evaluated under axial loading for comparison with porcine liver in terms of stiffness. Additionally, Structural Heart - Myocardium (Myo) configurations were quantitatively evaluated under different lubricant conditions for comparison with porcine epicardium and aorta in terms of lubricity. Finally, experimental DA Subcutaneous Tissue configurations were qualitatively evaluated by experts with significant pre-clinical implant experience for cutting, tunneling, and puncture procedures.In general, the experimental SO configurations showed promising compliance results when compared to porcine liver. The stiffness of DA configurations was either within the same range or on the lower bound of porcine tissue stiffness values. The lubricity of DA configurations with surface treatments was comparable with porcine epicardium and aorta. In terms of qualitative cutting, DA did not perform well for any of the configurations; however, tunneling and puncture were rated favorably for some of the experimental configurations. Despite some limitations, DA feels closer to real tissue than other commercially available 3D printed materials. Furthermore, the lower sample-to-sample variability of DA allows for repeatability not provided by biological tissue. The promising results and repeatability indicate that DA materials can be used to configure structures with similar characteristic mechanical properties to porcine liver, epicardium, and subcutaneous tissue, adding new value as not only an educational, training, and surgical tool, but also as a research tool.


2020 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Lazaros Tzounis ◽  
Athena Maniadi ◽  
Emmanouil Velidakis ◽  
...  

The recycling of polymeric materials has received a steadily growing scientific and industrial interest due to the increase in demand and production of durable and lightweight plastic parts. Recycling of such materials is mostly based on thermomechanical processes that significantly affect the mechanical, as well as the overall physicochemical properties of polymers. The study at hand focuses on the recyclability of Fused Filament Fabrication (FFF) 3D printed Polypropylene (PP) for a certain number of recycling courses (six in total), and its effect on the mechanical properties of 3D printed parts. Namely, 3D printed specimens were fabricated from non-recycled and recycled PP material, and further experimentally tested regarding their mechanical properties in tension, flexion, impact, and microhardness. Comprehensive dynamic scanning calorimetry (DSC), thermogravimetric analysis (TGA), Raman spectroscopy, and morphological investigations by scanning electron microscopy (SEM) were performed for the different 3D printed PP samples. The overall results showed that there is an overall slight increase in the material’s mechanical properties, both in tension and in flexion mode, while the DSC characterization indicates an increase in the polymer crystallinity over the recycling course.


Sign in / Sign up

Export Citation Format

Share Document