scholarly journals Epigenomic characterization of latent HIV infection identifies latency regulating transcription factors

2021 ◽  
Vol 17 (2) ◽  
pp. e1009346
Author(s):  
Stuart R. Jefferys ◽  
Samuel D. Burgos ◽  
Jackson J. Peterson ◽  
Sara R. Selitsky ◽  
Anne-Marie W. Turner ◽  
...  

Transcriptional silencing of HIV in CD4 T cells generates a reservoir of latently infected cells that can reseed infection after interruption of therapy. As such, these cells represent the principal barrier to curing HIV infection, but little is known about their characteristics. To further our understanding of the molecular mechanisms of latency, we characterized a primary cell model of HIV latency in which infected cells adopt heterogeneous transcriptional fates. In this model, we observed that latency is a stable, heritable state that is transmitted through cell division. Using Assay of Transposon-Accessible Chromatin sequencing (ATACseq) we found that latently infected cells exhibit greatly reduced proviral accessibility, indicating the presence of chromatin-based structural barriers to viral gene expression. By quantifying the activity of host cell transcription factors, we observe elevated activity of Forkhead and Kruppel-like factor transcription factors (TFs), and reduced activity of AP-1, RUNX and GATA TFs in latently infected cells. Interestingly, latency reversing agents with different mechanisms of action caused distinct patterns of chromatin reopening across the provirus. We observe that binding sites for the chromatin insulator CTCF are highly enriched in the differentially open chromatin of infected CD4 T cells. Furthermore, depletion of CTCF inhibited HIV latency, identifying this factor as playing a key role in the initiation or enforcement of latency. These data indicate that HIV latency develops preferentially in cells with a distinct pattern of TF activity that promotes a closed proviral structure and inhibits viral gene expression. Furthermore, these findings identify CTCF as a novel regulator of HIV latency.

2020 ◽  
Author(s):  
Stuart R Jefferys ◽  
Sam Burgos ◽  
Jackson J Peterson ◽  
Sara R Selitsky ◽  
Anne-Marie Turner ◽  
...  

SummaryTranscriptional silencing of HIV generates a reservoir of latently infected cells, but the mechanisms that lead to this outcome are not well understood. We characterized a primary cell model of HIV latency, and observed that latency is a stable, heritable viral state that is rapidly reestablished after stimulation. Using Assay of Transposon-Accessible Chromatin sequencing (ATACseq) we found that latently infected cells exhibit reduced proviral accessibility, elevated activity of Forkead and Kruppel-like factor transcription factors (TFs), and reduced activity of AP-1, RUNX and GATA TFs. Latency reversing agents caused distinct patterns of chromatin reopening across the provirus. Furthermore, depletion of a chromatin domain insulator, CTCF inhibited HIV latency, identifying this factor as playing a key role in the initiation or enforcement of latency. These data indicate that HIV latency develops preferentially in cells with a distinct pattern of TF activity that promotes a closed proviral structure and inhibits viral gene expression.


2008 ◽  
Vol 82 (23) ◽  
pp. 11637-11650 ◽  
Author(s):  
Verena Böhm ◽  
Christian O. Simon ◽  
Jürgen Podlech ◽  
Christof K. Seckert ◽  
Dorothea Gendig ◽  
...  

ABSTRACT Cytomegaloviruses express glycoproteins that interfere with antigen presentation to CD8 T cells. Although the molecular modes of action of these “immunoevasins” differ between cytomegalovirus species, the convergent biological outcome is an inhibition of the recognition of infected cells. In murine cytomegalovirus, m152/gp40 retains peptide-loaded major histocompatibility complex class I molecules in a cis-Golgi compartment, m06/gp48 mediates their vesicular sorting for lysosomal degradation, and m04/gp34, although not an immunoevasin in its own right, appears to assist in the concerted action of all three molecules. Using the Ld-restricted IE1 epitope YPHFMPTNL in the BALB/c mouse model as a paradigm, we provide here an explanation for the paradox that immunoevasins enhance CD8 T-cell priming although they inhibit peptide presentation in infected cells. Adaptive immune responses are initiated in the regional lymph node (RLN) draining the site of pathogen exposure. In particular for antigens that are not virion components, the magnitude of viral gene expression providing the antigens is likely a critical parameter in priming efficacy. We have therefore focused on the events in the RLN and have related priming to intranodal viral gene expression. We show that immunoevasins enhance priming by downmodulating an early CD8 T-cell-mediated “negative feedback” control of the infection in the cortical region of the RLN, thus supporting the model that immunoevasins improve antigen supply for indirect priming by uninfected antigen-presenting cells. As an important consequence, these findings predict that deletion of immunoevasin genes in a replicative vaccine virus is not a favorable option but may, rather, be counterproductive.


2019 ◽  
Author(s):  
Mateusz Stoszko ◽  
Abdullah M.S. Al-Hatmi ◽  
Anton Skriba ◽  
Michael Roling ◽  
Enrico Ne ◽  
...  

AbstractA leading pharmacological strategy towards HIV cure requires “shock” or activation of HIV gene expression in latently infected cells with Latency Reversal Agents (LRAs) followed by their subsequent clearance. In a screen for novel LRAs we used fungal secondary metabolites (extrolites) as a source of bio-active molecules. Using orthogonal mass spectrometry (MS) coupled to latency reversal bioassays, we identified gliotoxin (GTX) as a novel LRA. GTX significantly induced HIV-1 gene expression in latent ex vivo infected primary cells and in CD4+ T cells from all aviremic HIV-1+ participants. RNA sequencing identified 7SK RNA, the scaffold of the P-TEFb inhibitory 7SK snRNP complex to be significantly reduced upon GTX treatment of independent donor CD4+T cells. GTX disrupted 7SK snRNP, releasing active P-TEFb, which then phosphorylated RNA Pol II CTD, inducing HIV transcription. Our data highlight the power of combining a medium throughput bioassay, mycology and orthogonal mass spectrometry to identify novel potentially therapeutic compounds.


2020 ◽  
Vol 95 (2) ◽  
pp. e01331-20
Author(s):  
Steven A. Yukl ◽  
Shahzada Khan ◽  
Tsui-Hua Chen ◽  
Martin Trapecar ◽  
Frank Wu ◽  
...  

ABSTRACTLatent HIV infection is the main barrier to cure, and most HIV-infected cells reside in the gut, where distinct but unknown mechanisms may promote viral latency. Transforming growth factor β (TGF-β), which induces the expression of CD103 on tissue-resident memory T cells, has been implicated in HIV latency. Using CD103 as a surrogate marker to identify cells that have undergone TGF-β signaling, we compared the HIV RNA/DNA contents and cellular transcriptomes of CD103+ and CD103− CD4 T cells from the blood and rectum of HIV-negative (HIV−) and antiretroviral therapy (ART)-suppressed HIV-positive (HIV+) individuals. Like gut CD4+ T cells, circulating CD103+ cells harbored more HIV DNA than did CD103− cells but transcribed less HIV RNA per provirus. Circulating CD103+ cells also shared a gene expression profile that is closer to that of gut CD4 T cells than to that of circulating CD103− cells, with significantly lower expression levels of ribosomal proteins and transcriptional and translational pathways associated with HIV expression but higher expression levels of a subset of genes implicated in suppressing HIV transcription. These findings suggest that blood CD103+ CD4 T cells can serve as a model to study the molecular mechanisms of HIV latency in the gut and reveal new cellular factors that may contribute to HIV latency.IMPORTANCE The ability of HIV to establish a reversibly silent, “latent” infection is widely regarded as the main barrier to curing HIV. Most HIV-infected cells reside in tissues such as the gut, but it is unclear what mechanisms maintain HIV latency in the blood or gut. We found that circulating CD103+ CD4+ T cells are enriched for HIV-infected cells in a latent-like state. Using RNA sequencing (RNA-seq), we found that CD103+ T cells share a cellular transcriptome that more closely resembles that of CD4+ T cells from the gut, suggesting that they are homing to or from the gut. We also identified the cellular genes whose expression distinguishes gut CD4+ or circulating CD103+ T cells from circulating CD103− T cells, including some genes that have been implicated in HIV expression. These genes may contribute to latent HIV infection in the gut and may serve as new targets for therapies aimed at curing HIV.


2018 ◽  
Vol 92 (20) ◽  
Author(s):  
Alessandra Noto ◽  
Francesco A. Procopio ◽  
Riddhima Banga ◽  
Madeleine Suffiotti ◽  
Jean-Marc Corpataux ◽  
...  

ABSTRACTA recent study conducted in blood has proposed CD32 as the marker identifying the “elusive” HIV reservoir. We have investigated the distribution of CD32+CD4 T cells in blood and lymph nodes (LNs) of HIV-1-uninfected subjects and viremic untreated and long-term-treated HIV-1-infected individuals and their relationship with PD-1+CD4 T cells. The frequency of CD32+CD4 T cells was increased in viremic compared to treated individuals in LNs, and a large proportion (up to 50%) of CD32+cells coexpressed PD-1 and were enriched within T follicular helper (Tfh) cells. We next investigated the role of LN CD32+CD4 T cells in the HIV reservoir. Total HIV DNA was enriched in CD32+and PD-1+CD4 T cells compared to CD32−and PD-1−cells in both viremic and treated individuals, but there was no difference between CD32+and PD-1+cells. There was no enrichment of latently infected cells with inducible HIV-1 in CD32+versus PD-1+cells in antiretroviral therapy (ART)-treated individuals. HIV-1 transcription was then analyzed in LN memory CD4 T cell populations sorted on the basis of CD32 and PD-1 expression. CD32+PD-1+CD4 T cells were significantly enriched in cell-associated HIV RNA compared to CD32−PD-1−(averages of 5.2-fold in treated individuals and 86.6-fold in viremics), CD32+PD-1−(2.2-fold in treated individuals and 4.3-fold in viremics), and CD32−PD-1+(2.2-fold in ART-treated individuals and 4.6-fold in viremics) cell populations. Similar levels of HIV-1 transcription were found in CD32+PD-1−and CD32−PD-1+CD4 T cells. Interestingly, the proportion of CD32+and PD-1+CD4 T cells negatively correlated with CD4 T cell counts and length of therapy. Therefore, the expression of CD32 identifies, independently of PD-1, a CD4 T cell population with persistent HIV-1 transcription and coexpression of CD32 and PD-1, the CD4 T cell population with the highest levels of HIV-1 transcription in both viremic and treated individuals.IMPORTANCEThe existence of long-lived latently infected resting memory CD4 T cells represents a major obstacle to the eradication of HIV infection. Identifying cell markers defining latently infected cells containing replication-competent virus is important in order to determine the mechanisms of HIV persistence and to develop novel therapeutic strategies to cure HIV infection. We provide evidence that PD-1 and CD32 may have a complementary role in better defining CD4 T cell populations infected with HIV-1. Furthermore, CD4 T cells coexpressing CD32 and PD-1 identify a CD4 T cell population with high levels of persistent HIV-1 transcription.


2018 ◽  
Author(s):  
Alessandra Noto ◽  
Francesco A. Procopio ◽  
Riddhima Banga ◽  
Madeleine Suffiotti ◽  
Jean-Marc Corpataux ◽  
...  

ABSTRACTA recent study conducted in blood has proposed CD32 as the marker identifying the ‘elusive’ HIV reservoir. We have investigated the distribution of CD32+CD4 T cells in blood and lymph nodes(LNs) of healthy HIV-1 uninfected, viremic untreated and long-term treated HIV-1 infected individuals and their relationship with PD-1+CD4 T cells. The frequency of CD32+CD4 T cells was increased in viremic as compared to treated individuals in LNs and a large proportion(up to 50%) of CD32+cells co-expressed PD-1 and were enriched within T follicular helper cells(Tfh) cells. We next investigated the role of LN CD32+CD4 T cells in the HIV reservoir. Total HIV DNA was enriched in CD32+and PD-1+CD4 T cells as compared to CD32-and PD-1-cells in both viremic and treated individuals but there was no difference between CD32+and PD-1+cells. There was not enrichment of latently infected cells with inducible HIV-1 in CD32+versus PD-1+cells in ART treated individuals. HIV-1 transcription was then analyzed in LN memory CD4 T cell populations sorted on the basis of CD32 and PD-1 expression. CD32+PD-1+CD4 T cells were significantly enriched in cell associated HIV RNA as compared to CD32-PD-1-(average 5.2 fold in treated and 86.6 fold in viremics), to CD32+PD-1-(2.2 fold in treated and 4.3 fold in viremics) and to CD32-PD-1+cell populations(2.2 fold in ART treated and 4.6 fold in viremics). Similar levels of HIV-1 transcription were found in CD32+PD-1-and CD32-PD-1+CD4 T cells. Interestingly, the proportion of CD32+and PD-1+CD4 T cells negatively correlated with CD4 T cell counts and length of therapy while positively correlated with viremia. Therefore, the expression of CD32 identifies, independently of PD-1, a CD4 T cell population with persistent HIV-1 transcription and CD32 and PD-1 co-expression the CD4 T cell population with the highest levels of HIV-1 transcription in both viremic and treated individuals.ImportanceThe existence of long-lived latently infected resting memory CD4 T cells represents a major obstacle to the eradication of HIV infection. Identifying cell markers defining latently infected cells containing replication competent virus is important in order to determine the mechanisms of HIV persistence and to develop novel therapeutic strategies to cure HIV infection. We provide evidence that PD-1 and CD32 may have a complementary role in better defining CD4 T cell populations infected with HIV-1. Furthermore, CD4 T cells co-expressing CD32 and PD-1 identify a CD4 T cell population with high levels of persistent HIV-1 transcription.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simon X. M. Dong ◽  
Frederick S. Vizeacoumar ◽  
Kalpana K. Bhanumathy ◽  
Nezeka Alli ◽  
Cristina Gonzalez-Lopez ◽  
...  

Abstract Background Macrophages, besides resting latently infected CD4+ T cells, constitute the predominant stable, major non-T cell HIV reservoirs. Therefore, it is essential to eliminate both latently infected CD4+ T cells and tissue macrophages to completely eradicate HIV in patients. Until now, most of the research focus is directed towards eliminating latently infected CD4+ T cells. However, few approaches have been directed at killing of HIV-infected macrophages either in vitro or in vivo. HIV infection dysregulates the expression of many host genes essential for the survival of infected cells. We postulated that exploiting this alteration may yield novel targets for the selective killing of infected macrophages. Methods We applied a pooled shRNA-based genome-wide approach by employing a lentivirus-based library of shRNAs to screen novel gene targets whose inhibition should selectively induce apoptosis in HIV-infected macrophages. Primary human MDMs were infected with HIV-eGFP and HIV-HSA viruses. Infected MDMs were transfected with siRNAs specific for the promising genes followed by analysis of apoptosis by flow cytometry using labelled Annexin-V in HIV-infected, HIV-exposed but uninfected bystander MDMs and uninfected MDMs. The results were analyzed using student’s t-test from at least four independent experiments. Results We validated 28 top hits in two independent HIV infection models. This culminated in the identification of four target genes, Cox7a2, Znf484, Cstf2t, and Cdk2, whose loss-of-function induced apoptosis preferentially in HIV-infected macrophages. Silencing these single genes killed significantly higher number of HIV-HSA-infected MDMs compared to the HIV-HSA-exposed, uninfected bystander macrophages, indicating the specificity in the killing of HIV-infected macrophages. The mechanism governing Cox7a2-mediated apoptosis of HIV-infected macrophages revealed that targeting respiratory chain complex II and IV genes also selectively induced apoptosis of HIV-infected macrophages possibly through enhanced ROS production. Conclusions We have identified above-mentioned novel genes and specifically the respiratory chain complex II and IV genes whose silencing may cause selective elimination of HIV-infected macrophages and eventually the HIV-macrophage reservoirs. The results highlight the potential of the identified genes as targets for eliminating HIV-infected macrophages in physiological environment as part of an HIV cure strategy.


2002 ◽  
Vol 76 (15) ◽  
pp. 7578-7586 ◽  
Author(s):  
Bodil Øster ◽  
Per Höllsberg

ABSTRACT Herpesvirus gene expression is divided into immediate-early (IE) or α genes, early (E) or β genes, and late (L) or γ genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors.


Sign in / Sign up

Export Citation Format

Share Document