scholarly journals Cryptic, solo acylhomoserine lactone synthase from predatory myxobacterium suggests beneficial contribution to prey quorum signaling

2019 ◽  
Author(s):  
Hanan Albataineh ◽  
Maya Duke ◽  
Sandeep K. Misra ◽  
Joshua S. Sharp ◽  
D. Cole Stevens

AbstractConsidered a key taxon in microbial communities, myxobacteria exist as coordinated swarms that utilize an excreted combination of lytic enzymes and specialized metabolites to facilitate predation of numerous microbial phyla. This capacity to produce biologically active metabolites and the associated abundance of natural product biosynthetic pathways contained within their genomes have motivated continued drug discovery efforts from myxobacteria. Of all the biosynthetic gene clusters associated with myxobacteria deposited in the antiSMASH database (∼1,000 total), only one putative acylhomoserine lactone synthase, agpI, was observed in genome data from the myxobacterium Archangium gephyra. Without an acylhomoserine lactone (AHL) receptor also apparent in the genome of A. gephyra, we sought to determine if AgpI was the first example of an orphaned AHL synthase. Herein we report the bioinformatic assessment of AgpI and discovery of a second myxobacterial AHL synthase from Vitiosangium sp. strain GDMCC 1.1324. During axenic cultivation conditions, no detectible AHL metabolites were observed in A. gephyra extracts. However, heterologous expression of each synthase in Escherichia coli provided detectible quantities of 3 AHL signals including 2 known AHLs, C8-AHL and C9-AHL. These results suggest that A. gephyra AHL production is dormant during axenic cultivation conditions and requires an unknown external cue for activation. The orphaned AHL synthase, AgpI, is the first to be reported from a predatory myxobacterium, and predator production of prey quorum signals provides unique insight into interspecies crosstalk within polymicrobial communities.ImportanceThe presence of orphaned quorum signal receptors and associated recognition and response to exogenous acylhomoserine lactone quorum signals observed in microbial communities provides evidence for small molecule-mediated interspecies interactions. While the high occurrence of orphaned AHL receptors from bacteria that do not produce cognate AHL signals suggests the involvement of AHL signals as a shared chemical resource in polymicrobial communities, no orphaned AHL synthases have been determined to be functional in a species without an associated AHL receptor. An orphan signal synthase from a predatory myxobacterium provides an alternative perspective on the evolution and benefits of quorum signaling systems within these communities.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hanan Albataineh ◽  
Maya Duke ◽  
Sandeep K. Misra ◽  
Joshua S. Sharp ◽  
D. Cole Stevens

AbstractConsidered a key taxon in soil and marine microbial communities, myxobacteria exist as coordinated swarms that utilize a combination of lytic enzymes and specialized metabolites to facilitate predation of microbes. This capacity to produce specialized metabolites and the associated abundance of biosynthetic pathways contained within their genomes have motivated continued drug discovery efforts from myxobacteria. Of all myxobacterial biosynthetic gene clusters deposited in the antiSMASH database, only one putative acylhomoserine lactone (AHL) synthase, agpI, was observed, in genome data from Archangium gephyra. Without an AHL receptor also apparent in the genome of A. gephyra, we sought to determine if AgpI was an uncommon example of an orphaned AHL synthase. Herein we report the bioinformatic assessment of AgpI and discovery of a second AHL synthase from Vitiosangium sp. During axenic cultivation conditions, no detectible AHL metabolites were observed in A. gephyra extracts. However, heterologous expression of each synthase in Escherichia coli provided detectible quantities of 3 AHL signals including 2 known AHLs, C8-AHL and C9-AHL. These results suggest that A. gephyra AHL production is dormant during axenic cultivation. The functional, orphaned AHL synthase, AgpI, is unique to A. gephyra, and its utility to the predatory myxobacterium remains unknown.


2019 ◽  
Vol 86 (2) ◽  
Author(s):  
Paul G. Livingstone ◽  
Oliver Ingleby ◽  
Susan Girdwood ◽  
Alan R. Cookson ◽  
Russell M. Morphew ◽  
...  

ABSTRACT Corallococcus spp. are common soil-dwelling organisms which kill and consume prey microbes through the secretion of antimicrobial substances. Two species of Corallococcus have been described previously (Corallococcus coralloides and Corallococcus exiguus). A polyphasic approach, including biochemical analysis of fatty acid methyl esters, substrate utilization, and sugar assimilation assays, was taken to characterize eight Corallococcus species strains and the two type strains. The genomes of all strains, including that of C. exiguus DSM 14696T (newly reported here), shared an average nucleotide identity below 95% and digital DNA-DNA hybridization scores of less than 70%, indicating that they belong to distinct species. In addition, we characterized the prey range and antibiotic resistance profile of each strain, illustrating the diversity of antimicrobial activity and, thus, the potential for drug discovery within the Corallococcus genus. Each strain gave a distinct profile of properties, which together with their genomic differences supports the proposal of the eight candidate strains as novel species. The eight candidates are as follows: Corallococcus exercitus sp. nov. (AB043AT = DSM 108849T = NBRC 113887T), Corallococcus interemptor sp. nov. (AB047AT = DSM 108843T = NBRC 113888T), Corallococcus aberystwythensis sp. nov. (AB050AT = DSM 108846T = NBRC 114019T), Corallococcus praedator sp. nov. (CA031BT = DSM 108841T = NBRC 113889T), Corallococcus sicarius sp. nov. (CA040BT = DSM 108850T = NBRC 113890T), Corallococcus carmarthensis sp. nov. (CA043DT = DSM 108842T = NBRC 113891T), Corallococcus llansteffanensis sp. nov. (CA051BT = DSM 108844T = NBRC 114100T), and Corallococcus terminator sp. nov. (CA054AT = DSM 108848T = NBRC 113892T). IMPORTANCE Corallococcus is a genus of predators with broad prey ranges, whose genomes contain large numbers of gene clusters for secondary metabolite biosynthesis. The physiology and evolutionary heritage of eight Corallococcus species strains were characterized using a range of analyses and assays. Multiple metrics confirmed that each strain belonged to a novel species within the Corallococcus genus. The strains exhibited distinct patterns of drug resistance and predatory activity, which mirrored their possession of diverse sets of biosynthetic genes. The breadth of antimicrobial activities observed within the Corallococcus genus highlights their potential for drug discovery and suggests a previous underestimation of both their taxonomic diversity and biotechnological potential. Taxonomic assignment of environmental isolates to novel species allows us to begin to characterize the diversity and evolution of members of this bacterial genus with potential biotechnological importance, guiding future bioprospecting efforts for novel biologically active metabolites and antimicrobials.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2018 ◽  
Vol 18 (2) ◽  
pp. 182-194 ◽  
Author(s):  
Aliyu Muhammad ◽  
Mohammed Auwal Ibrahim ◽  
Ochuko Lucky Erukainure ◽  
Ibrahim Malami ◽  
Auwal Adamu

Background: Cancer is a multifaceted metabolic disease that affects sizeable dwellers of rural and urban areas. Among the various types of cancer, mammary cancer is one of the most frequently diagnosed cancers in women. Its menace can be curbed with locally consumed spices due to their multiple bioactive phytochemicals. Aims: This review focuses on the breast cancer chemopreventive and therapeutic potentials of locally consumed spices. Methods/Results: The most commonly consumed spices with breast cancer chemopreventive and chemotherapeutic phytochemical include pepper, onions, ginger, garlic, curry and thyme containing many biologically active metabolites ranging from vitamins, fatty acids esters, polyphenols/phenolics, sulfurcontaining compounds and anthraquinones with proven antioxidant, anti-inflammatory, immuno-modulatory, antitumor and anticancer properties against breast cancer/carcinogenesis. Therefore, extracts and active principles of these spices could be explored in breast cancer chemoprevention and possibly therapeutically which may provide an avenue for reducing the risk and prevalence of breast cancer.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 298
Author(s):  
Despoina Konstantinou ◽  
Rafael V. Popin ◽  
David P. Fewer ◽  
Kaarina Sivonen ◽  
Spyros Gkelis

Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Kyle C. Costa ◽  
Megan Bergkessel ◽  
Scott Saunders ◽  
Jonas Korlach ◽  
Dianne K. Newman

ABSTRACTDiverse bacteria, including severalPseudomonasspecies, produce a class of redox-active metabolites called phenazines that impact different cell types in nature and disease. Phenazines can affect microbial communities in both positive and negative ways, where their presence is correlated with decreased species richness and diversity. However, little is known about how the concentration of phenazines is modulatedin situand what this may mean for the fitness of members of the community. Through culturing of phenazine-degrading mycobacteria, genome sequencing, comparative genomics, and molecular analysis, we identified several conserved genes that are important for the degradation of threePseudomonas-derived phenazines: phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and pyocyanin (PYO). PCA can be used as the sole carbon source for growth by these organisms. Deletion of several genes inMycobacterium fortuitumabolishes the degradation phenotype, and expression of two genes in a heterologous host confers the ability to degrade PCN and PYO. In cocultures with phenazine producers, phenazine degraders alter the abundance of different phenazine types. Not only does degradation support mycobacterial catabolism, but also it provides protection to bacteria that would otherwise be inhibited by the toxicity of PYO. Collectively, these results serve as a reminder that microbial metabolites can be actively modified and degraded and that these turnover processes must be considered when the fate and impact of such compounds in any environment are being assessed.IMPORTANCEPhenazine production byPseudomonasspp. can shape microbial communities in a variety of environments ranging from the cystic fibrosis lung to the rhizosphere of dryland crops. For example, in the rhizosphere, phenazines can protect plants from infection by pathogenic fungi. The redox activity of phenazines underpins their antibiotic activity, as well as providing pseudomonads with important physiological benefits. Our discovery that soil mycobacteria can catabolize phenazines and thereby protect other organisms against phenazine toxicity suggests that phenazine degradation may influence turnoverin situ. The identification of genes involved in the degradation of phenazines opens the door to monitoring turnover in diverse environments, an essential process to consider when one is attempting to understand or control communities influenced by phenazines.


ChemInform ◽  
2009 ◽  
Vol 40 (30) ◽  
Author(s):  
M. P. Sobolevskaya ◽  
V. A. Denisenko ◽  
S. Fotso ◽  
H. Laach ◽  
N. I. Menzorova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document