scholarly journals Chronic viral infection promotes early germinal center exit of B cells and impaired antibody development

2019 ◽  
Author(s):  
Ryan P. Staupe ◽  
Laura A. Vella ◽  
Sasikanth Manne ◽  
Josephine R. Giles ◽  
Wenzhao Meng ◽  
...  

SUMMARYChronic viral infections disrupt B cell responses leading to impaired affinity maturation and delayed control of viremia. Previous studies have identified early pre-germinal center (GC) B cell attrition but the impact of chronic infections on B cell fate decisions in the GC remains poorly understood. To address this question, we used single-cell transcriptional profiling of virus-specific GC B cells to test the hypothesis that chronic viral infection disrupted GC B cell fate decisions leading to suboptimal humoral immunity. These studies revealed a critical GC differentiation checkpoint that is disrupted by chronic infection, specifically at the point of dark zone re-entry. During chronic viral infection, virus-specific GC B cells were shunted towards terminal plasma cell (PC) or memory B cell (MBC) fates at the expense of continued participation in the GC. Early GC exit was associated with decreased B cell mutational burden and antibody quality. Persisting antigen and inflammation independently drove facets of dysregulation, with a key role for inflammation in directing premature terminal GC B cell differentiation and GC exit. Thus, these studies define GC defects during chronic viral infection and identify a critical GC checkpoint that is short-circuited, preventing optimal maturation of humoral immunity.

2019 ◽  
Vol 2 (6) ◽  
pp. e201900506 ◽  
Author(s):  
Zilu Zhu ◽  
Ashima Shukla ◽  
Parham Ramezani-Rad ◽  
John R Apgar ◽  
Robert C Rickert

The PI3K pathway is integral for the germinal center (GC) response. However, the contribution of protein kinase B (AKT) as a PI3K effector in GC B cells remains unknown. Here, we show that mice lacking the AKT1 and AKT2 isoforms in B cells failed to form GCs, which undermined affinity maturation and antibody production in response to immunization. Upon B-cell receptor stimulation, AKT1/2–deficient B cells showed poor survival, reduced proliferation, and impaired mitochondrial and metabolic fitness, which collectively halted GC development. By comparison, Foxo1T24A mutant, which cannot be inactivated by AKT1/2 phosphorylation and is sequestered in the nucleus, significantly enhanced antibody class switch recombination via induction of activation-induced cytidine deaminase (AID) expression. By contrast, repression of FOXO1 activity by AKT1/2 promoted IRF4-driven plasma cell differentiation. Last, we show that T-cell help via CD40, but not enforced expression of Bcl2, rescued the defective GC response in AKT1/2–deficient animals by restoring proliferative expansion and energy production. Overall, our study provides mechanistic insights into the key role of AKT and downstream pathways on B cell fate decisions during the GC response.


2018 ◽  
Author(s):  
Rajiv W Jain ◽  
Kate A Parham ◽  
Yodit Tesfagiorgis ◽  
Heather C Craig ◽  
Emiliano Romanchik ◽  
...  

AbstractB cell fate decisions within a germinal center (GC) are critical to determining the outcome of the immune response to a given antigen. Here, we characterize GC kinetics and B cell fate choices in a response to the autoantigen myelin oligodendrocyte glycoprotein (MOG), and compare them the response to a standard model foreign antigen (NP-haptenated ovalbumin, NPOVA). Both antigens generated productive primary responses, as evidenced by GC development, circulating antigen-specific antibodies, and differentiation of memory B cells. However, in the MOG response the status of the cognate T cell partner drove preferential B cell differentiation to a memory phenotype at the expense of GC maintenance, resulting in a truncated GC. Reduced plasma cell differentiation was largely independent of T cell influence. Interestingly, memory B cells formed in the MOG GC were unresponsive to secondary challenge and this could not be overcome with T cell help.


2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Michelle S.J. Lee ◽  
Takeshi Inoue ◽  
Wataru Ise ◽  
Julia Matsuo-Dapaah ◽  
James B. Wing ◽  
...  

The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell–intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell–specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.


Author(s):  
Liam Kealy ◽  
Kim L Good-Jacobson

Abstract Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre, a site where responding B-cells undergo affinity maturation and is one of the major routes for memory B-cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the germinal centre and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B-cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B-cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of germinal centre and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as SARS-CoV-2.


2021 ◽  
Vol 218 (11) ◽  
Author(s):  
Eric J. Wigton ◽  
Yohei Mikami ◽  
Ryan J. McMonigle ◽  
Carlos A. Castellanos ◽  
Adam K. Wade-Vallance ◽  
...  

MicroRNAs (miRNAs, miRs) regulate cell fate decisions by post-transcriptionally tuning networks of mRNA targets. We used miRNA-directed pathway discovery to reveal a regulatory circuit that influences Ig class switch recombination (CSR). We developed a system to deplete mature, activated B cells of miRNAs, and performed a rescue screen that identified the miR-221/222 family as a positive regulator of CSR. Endogenous miR-221/222 regulated B cell CSR to IgE and IgG1 in vitro, and miR-221/222–deficient mice exhibited defective IgE production in allergic airway challenge and polyclonal B cell activation models in vivo. We combined comparative Ago2-HITS-CLIP and gene expression analyses to identify mRNAs bound and regulated by miR-221/222 in primary B cells. Interrogation of these putative direct targets uncovered functionally relevant downstream genes. Genetic depletion or pharmacological inhibition of Foxp1 and Arid1a confirmed their roles as key modulators of CSR to IgE and IgG1.


2020 ◽  
Vol 217 (9) ◽  
Author(s):  
Xin Li ◽  
Liying Gong ◽  
Alexandre P. Meli ◽  
Danielle Karo-Atar ◽  
Weili Sun ◽  
...  

Antigen uptake and presentation by naive and germinal center (GC) B cells are different, with the former expressing even low-affinity BCRs efficiently capture and present sufficient antigen to T cells, whereas the latter do so more efficiently after acquiring high-affinity BCRs. We show here that antigen uptake and processing by naive but not GC B cells depend on Cbl and Cbl-b (Cbls), which consequently control naive B and cognate T follicular helper (Tfh) cell interaction and initiation of the GC reaction. Cbls mediate CD79A and CD79B ubiquitination, which is required for BCR-mediated antigen endocytosis and postendocytic sorting to lysosomes, respectively. Blockade of CD79A or CD79B ubiquitination or Cbls ligase activity is sufficient to impede BCR-mediated antigen processing and GC development. Thus, Cbls act at the entry checkpoint of the GC reaction by promoting naive B cell antigen presentation. This regulation may facilitate recruitment of naive B cells with a low-affinity BCR into GCs to initiate the process of affinity maturation.


2020 ◽  
Vol 217 (7) ◽  
Author(s):  
Amparo Toboso-Navasa ◽  
Arief Gunawan ◽  
Giulia Morlino ◽  
Rinako Nakagawa ◽  
Andrea Taddei ◽  
...  

Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC–MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC–MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC–MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.


2003 ◽  
Vol 198 (8) ◽  
pp. 1157-1169 ◽  
Author(s):  
Ziaur SM. Rahman ◽  
Sambasiva P. Rao ◽  
Susan L. Kalled ◽  
Tim Manser

The factors regulating germinal center (GC) B cell fate are poorly understood. Recent studies have defined a crucial role for the B cell–activating factor belonging to TNF family (BAFF; also called BLyS) in promoting primary B cell survival and development. A role for this cytokine in antigen-driven B cell responses has been suggested but current data in this regard are limited. A BAFF receptor expressed by B cells (BAFF-R/BR3) is defective in A/WySnJ mice which exhibit a phenotype similar to BAFF-deficient (BAFF−/−) animals. Here, we show that although GC responses can be efficiently induced in both A/WySnJ and BAFF−/− mice, these responses are not sustained. In BAFF−/− mice, this response is rapidly attenuated and accompanied by perturbed follicular dendritic cell development and immune complex trapping. In contrast, analysis of the A/WySnJ GC response revealed a B cell autonomous proliferative defect associated with reduced or undetectable Ki67 nuclear proliferation antigen expression by GC B cells at all stages of the response. These data demonstrate a multifaceted role for the BAFF pathway in regulating GC progression.


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Jing Liu ◽  
Wanqin Xie ◽  
Miles D. Lange ◽  
Sang Yong Hong ◽  
Kaihong Su ◽  
...  

It has been recognized for a long time that engagement of B cell antigen receptors (BCRs) on immature B cells or mature B cells leads to completely opposite cell fate decisions. The underlying mechanism remains unclear. Here, we show that crosslinking of BCRs on human EU12μHC+immature B cells resulted in complete internalization of cell surface BCRs. After loss of cell surface BCRs, restimulation of EU12μHC+cells showed impaired Ca2+flux, delayed SYK phosphorylation, and decreased CD19 and FOXO1 phosphorylation, which differ from those in mature Daudi or Ramos B cells with partial internalization of BCRs. In contrast, sustained phosphorylation and reactivation of ERK upon restimulation were observed in the EU12μHC+cells after BCR internalization. Taken together, these results show that complete internalization of cell surface BCRs in EU12μHC+cells specifically alters the downstream signaling events, which may favor receptor editing versus cell activation.


Author(s):  
Yanan Li ◽  
Anshuman Bhanja ◽  
Arpita Upadhyaya ◽  
Xiaodong Zhao ◽  
Wenxia Song

B-cells undergo somatic hypermutation and affinity maturation in germinal centers. Somatic hypermutated germinal center B-cells (GCBs) compete to engage with and capture antigens on follicular dendritic cells. Recent studies show that when encountering membrane antigens, GCBs generate actin-rich pod-like structures with B-cell receptor (BCR) microclusters to facilitate affinity discrimination. While deficiencies in actin regulators, including the Wiskott-Aldrich syndrome protein (WASp), cause B-cell affinity maturation defects, the mechanism by which actin regulates BCR signaling in GBCs is not fully understood. Using WASp knockout (WKO) mice that express Lifeact-GFP and live-cell total internal reflection fluorescence imaging, this study examined the role of WASp-mediated branched actin polymerization in the GCB immunological synapse. After rapid spreading on antigen-coated planar lipid bilayers, GCBs formed microclusters of phosphorylated BCRs and proximal signaling molecules at the center and the outer edge of the contact zone. The centralized signaling clusters localized at actin-rich GCB membrane protrusions. WKO reduced the centralized micro-signaling clusters by decreasing the number and stability of F-actin foci supporting GCB membrane protrusions. The actin structures that support the spreading membrane also appeared less frequently and regularly in WKO than in WT GCBs, which led to reductions in both the level and rate of GCB spreading and antigen gathering. Our results reveal essential roles for WASp in the generation and maintenance of unique structures for GCB immunological synapses.


Sign in / Sign up

Export Citation Format

Share Document