scholarly journals Dynamic expression of MMP28 during cranial morphogenesis

2019 ◽  
Author(s):  
Nadege Gouignard ◽  
Eric Theveneau ◽  
Jean-Pierre Saint-Jeannet

AbstractMatrix metalloproteinases (MMP) are a large family of proteases comprising 24 members in vertebrates. They are well known for their extracellular matrix remodelling activity. MMP28 is the last member of the family to be discovered. It is a secreted MMP involved in wound healing, immune system maturation, cell survival and migration. MMP28 is also expressed during embryogenesis in human and mouse. Here we describe the detailed expression profile of MMP28 in Xenopus laevis embryos. We show that MMP28 is expressed maternally and accumulates at neurula and tailbud stages specifically in the cranial placode territories adjacent to migrating neural crest cells. As a secreted MMP, MMP28 may be required in normal neural crest-placode interactions.

2020 ◽  
Vol 375 (1809) ◽  
pp. 20190559 ◽  
Author(s):  
Nadege Gouignard ◽  
Eric Theveneau ◽  
Jean-Pierre Saint-Jeannet

Matrix metalloproteinases (MMPs) are a large family of proteases comprising 24 members in vertebrates. They are well known for their extracellular matrix remodelling activity. MMP28 is the latest member of the family to be discovered. It is a secreted MMP involved in wound healing, immune system maturation, cell survival and migration. MMP28 is also expressed during embryogenesis in human and mouse. Here, we describe the detailed expression profile of MMP28 in Xenopus laevis embryos. We show that MMP28 is expressed maternally and accumulates at neurula and tail bud stages specifically in the cranial placode territories adjacent to migrating neural crest cells. As a secreted MMP, MMP28 may be required in neural crest–placode interactions. This article is part of a discussion meeting issue ‘Contemporary morphogenesis’.


2021 ◽  
Author(s):  
◽  
Sandi Grainne Dempsey

<p>Biomaterials derived from decellularised extracellular matrices have shown promise as tools in tissue regeneration and wound healing. Such materials display biocompatibility as well as inherent bioactivity, promoting constructive remodelling in healing tissues. In this study, the bioactivity of ovine forestomach matrix (a decellularised extracellular matrix biomaterial) is assessed based on its ability to affect the proliferation and migration of wound healing cells.  This material supported cell attachment and proliferation, but did not allow cell infiltration in vitro. Enzymatic digestion of the material rendered soluble components that were able to induce proliferation and migration of some cell types. Cell-mediated processing of the material generated a protein or proteins with chemotactic activity for mesenchymal stem cells in vitro. Mass spectrometry analysis indicated the bioactive component consisted of the proteoglycan decorin, or fragments thereof. Decorin has not previously been shown to induce mesenchymal stem cell motility, and these findings may add to what is known about decorin and its role in constructive remodelling. Furthermore, this cell-mediated approach for ECM breakdown could lead to the discovery of other bioactive peptides involved in ECM remodelling and wound healing.</p>


1990 ◽  
Vol 182 (1) ◽  
Author(s):  
R.E. Poelmann ◽  
A.C. Gittenberger-de Groot ◽  
M.M.T. Mentink ◽  
B. Delpech ◽  
N. Girard ◽  
...  

2021 ◽  
Author(s):  
◽  
Sandi Grainne Dempsey

<p>Biomaterials derived from decellularised extracellular matrices have shown promise as tools in tissue regeneration and wound healing. Such materials display biocompatibility as well as inherent bioactivity, promoting constructive remodelling in healing tissues. In this study, the bioactivity of ovine forestomach matrix (a decellularised extracellular matrix biomaterial) is assessed based on its ability to affect the proliferation and migration of wound healing cells.  This material supported cell attachment and proliferation, but did not allow cell infiltration in vitro. Enzymatic digestion of the material rendered soluble components that were able to induce proliferation and migration of some cell types. Cell-mediated processing of the material generated a protein or proteins with chemotactic activity for mesenchymal stem cells in vitro. Mass spectrometry analysis indicated the bioactive component consisted of the proteoglycan decorin, or fragments thereof. Decorin has not previously been shown to induce mesenchymal stem cell motility, and these findings may add to what is known about decorin and its role in constructive remodelling. Furthermore, this cell-mediated approach for ECM breakdown could lead to the discovery of other bioactive peptides involved in ECM remodelling and wound healing.</p>


2019 ◽  
Vol 52 (1) ◽  
Author(s):  
Wei Cao ◽  
Youping Feng

Abstract Background Long noncoding RNAs (lncRNAs) have been reported to be associated with dermis process during burn wound healing. This study aimed to investigate the role of lncRNA X-inactive specific transcript (XIST) in human skin fibroblasts (HSF) and extracellular matrix (ECM) as well as the regulatory network of XIST/microRNA-29b-3p (miR-29b-3p)/collagen 1 alpha 1 (COL1A1). Methods The wound samples were collected from 25 patients with deep partial thickness burn at day 5 after burn. The thermal injured model was established using HSF cells. The expressions of XIST, miR-29b-3p and COL1A1 were measured by quantitative real-time polymerase chain reaction and western blot. ECM synthesis, cell proliferation and migration were detected by western blot, cell counting kit-8 and trans-well assays, respectively. The interaction between miR-29b-3p and XIST or COL1A1 was explored by bioinformatics analysis and luciferase reporter assay. Results The expressions of XIST and COL1A1 were enhanced but miR-29b-3p expression was decreased after thermal injury. XIST overexpression promoted ECM synthesis, cell proliferation and migration in thermal injured HSF cells. However, XIST knockdown played an opposite effect. miR-29b-3p overexpression inhibited ECM synthesis, cell proliferation and migration, which was reversed by XIST. COL1A1 silence suppressed ECM synthesis, cell proliferation and migration by miR-29b-3p targeting. Moreover, COL1A1 up-regulation weakened the effect of XIST silence on ECM synthesis and HSF cell function. Conclusion XIST promoted ECM synthesis, cell proliferation and migration by sponging miR-29b-3p and targeting COL1A1 in HSF cells after thermal injury, indicating the promoting role of XIST in wound healing.


2019 ◽  
Vol 31 (4) ◽  
pp. 760
Author(s):  
Marina Hosotani ◽  
Osamu Ichii ◽  
Teppei Nakamura ◽  
Md Abdul Masum ◽  
Yuki Otani ◽  
...  

MRL/MpJ mice exhibit distinct phenotypes in several biological processes, including wound healing. Herein we report two unique phenotypes in the female reproductive system of MRL/MpJ mice that affect ovulation and luteinisation. We found that superovulation treatment resulted in the production of significantly more oocytes in MRL/MpJ than C57BL/6 mice (71.0±13.4 vs 26.8±2.8 respectively). However, no exon mutations were detected in genes coding for female reproductive hormones or their receptors in MRL/MpJ mice. In addition, the fertilisation rate was lower for ovulated oocytes from MRL/MpJ than C57BL/6 mice, with most of the fertilised oocytes showing abnormal morphology, characterised by deformation and cytolysis. Histological tracing of luteinisation showed that MRL/MpJ mice formed corpora lutea within 36h after ovulation, whereas C57BL/6 mice were still at the corpora haemorrhagica formation stage after 36h. The balance between the expression of matrix metalloproteinases and their tissue inhibitors shifted towards the former earlier after ovulation in MRL/MpJ than C57BL/6 mice. This result indicates a possible link between accelerated extracellular matrix remodelling in the ovulated or ruptured follicles and luteinisation in MRL/MpJ mice. Together, these findings reveal novel phenotypes in MRL/MpJ mice that provide novel insights into reproductive biology.


2020 ◽  
Vol 249 (7) ◽  
pp. 834-846 ◽  
Author(s):  
Claudia M. Arenas Gómez ◽  
Keith Z. Sabin ◽  
Karen Echeverri

1994 ◽  
Vol 72 (7) ◽  
pp. 1340-1353 ◽  
Author(s):  
Bahram Sadaghiani ◽  
Bruce J. Crawford ◽  
Juergen R. Vielkind

The changes in distribution of chondroitin sulfate proteoglycans (CSs) and fibronectin (FN), two major components of the extracellular matrix (ECM), are described during the development and migration of neural crest cells in two Xiphophorus species offish, X. helleri (swordtail) and X. maculatus (platyfish), using immunohistochemistry. A detailed description of the developmental changes in HNK-1-positive ECM components is also provided and compared with those of CSs and FN. HNK-1 antigen was also used as a marker for the neural crest cells. Weak staining for CSs, FN, and HNK-1-positive ECM was present in the neural crest cell migration pathways prior to migration of the cells. The level of staining increased dramatically during migration of these cells and decreased again after migration was nearly completed. Staining for CSs was more widespread than staining for FN, while the HNK-1 staining pattern was more clearly restricted to the migratory pathways than those seen with the other two antibodies. The correlation between the spatiotemporal relationship of these ECM components and the segregation and migration of neural crest cells suggests that these ECM molecules may be involved in both initiating and guiding the migration of neural crest cells in these fish. The HNK-1-positive ECM may play a more critical role than CSs and FN.


Sign in / Sign up

Export Citation Format

Share Document