scholarly journals Extracellular matrix derived peptides and mesenchymal stem cell motility

2021 ◽  
Author(s):  
◽  
Sandi Grainne Dempsey

<p>Biomaterials derived from decellularised extracellular matrices have shown promise as tools in tissue regeneration and wound healing. Such materials display biocompatibility as well as inherent bioactivity, promoting constructive remodelling in healing tissues. In this study, the bioactivity of ovine forestomach matrix (a decellularised extracellular matrix biomaterial) is assessed based on its ability to affect the proliferation and migration of wound healing cells.  This material supported cell attachment and proliferation, but did not allow cell infiltration in vitro. Enzymatic digestion of the material rendered soluble components that were able to induce proliferation and migration of some cell types. Cell-mediated processing of the material generated a protein or proteins with chemotactic activity for mesenchymal stem cells in vitro. Mass spectrometry analysis indicated the bioactive component consisted of the proteoglycan decorin, or fragments thereof. Decorin has not previously been shown to induce mesenchymal stem cell motility, and these findings may add to what is known about decorin and its role in constructive remodelling. Furthermore, this cell-mediated approach for ECM breakdown could lead to the discovery of other bioactive peptides involved in ECM remodelling and wound healing.</p>

2021 ◽  
Author(s):  
◽  
Sandi Grainne Dempsey

<p>Biomaterials derived from decellularised extracellular matrices have shown promise as tools in tissue regeneration and wound healing. Such materials display biocompatibility as well as inherent bioactivity, promoting constructive remodelling in healing tissues. In this study, the bioactivity of ovine forestomach matrix (a decellularised extracellular matrix biomaterial) is assessed based on its ability to affect the proliferation and migration of wound healing cells.  This material supported cell attachment and proliferation, but did not allow cell infiltration in vitro. Enzymatic digestion of the material rendered soluble components that were able to induce proliferation and migration of some cell types. Cell-mediated processing of the material generated a protein or proteins with chemotactic activity for mesenchymal stem cells in vitro. Mass spectrometry analysis indicated the bioactive component consisted of the proteoglycan decorin, or fragments thereof. Decorin has not previously been shown to induce mesenchymal stem cell motility, and these findings may add to what is known about decorin and its role in constructive remodelling. Furthermore, this cell-mediated approach for ECM breakdown could lead to the discovery of other bioactive peptides involved in ECM remodelling and wound healing.</p>


2015 ◽  
Vol 24 (14) ◽  
pp. 1635-1647 ◽  
Author(s):  
Arsalan Shabbir ◽  
Audrey Cox ◽  
Luis Rodriguez-Menocal ◽  
Marcela Salgado ◽  
Evangelos Van Badiavas

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Henna Roshini Alexander ◽  
Sharifah Sakinah Syed Alwi ◽  
Latifah Saiful Yazan ◽  
Fatin Hanani Zakarial Ansar ◽  
Yong Sze Ong

Wound healing is a regulated biological event that involves several processes including infiltrating leukocyte subtypes and resident cells. Impaired wound healing is one of the major problems in diabetic patients due to the abnormal physiological changes of tissues and cells in major processes. Thymoquinone, a bioactive compound found in Nigella sativa has been demonstrated to possess antidiabetic, anti-inflammatory, and antioxidant effects. Today, the rapidly progressing nanotechnology sets a new alternative carrier to enhance and favour the speed of healing process. In order to overcome its low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aimed to determine the effect of TQ-NLC and TQ on cell proliferation and migration, mode of cell death, and the antioxidant levels in normal and diabetic cell models, 3T3 and 3T3-L1. Cytotoxicity of TQ-NLC and TQ was determined by MTT assay. The IC10 values obtained for 3T3-L1 treated with TQ-NLC and TQ for 24 hours were 4.7 ± 3.3 and 5.3 ± 0.6 μM, respectively. As for 3T3, the IC10 values obtained for TQ-NLC and TQ at 24 hours were 4.3 ± 0.17 and 3.9 ± 2.05 μM, respectively. TQ-NLC was observed to increase the number of 3T3 and 3T3-L1 healthy cells (87–95%) and gradually decrease early apoptotic cells in time- and dose-dependant manner compared with TQ. In the proliferation and migration assay, 3T3-L1 treated with TQ-NLC showed higher proliferation and migration rate (p<0.05) compared with TQ. TQ-NLC also acted as an antioxidant by reducing the ROS levels in both cells after injury at concentration as low as 3 μM. Thus, this study demonstrated that TQ-NLC has better proliferation and migration as well as antioxidant effect compared with TQ especially on 3T3-L1 which confirms its ability as a good antidiabetic and antioxidant agent.


2018 ◽  
Vol 9 (4) ◽  
pp. 74 ◽  
Author(s):  
Diana Sequeira ◽  
Catarina Seabra ◽  
Paulo Palma ◽  
Ana Cardoso ◽  
João Peça ◽  
...  

Background: The development of materials with bioregenerative properties is critically important for vital pulp therapies and regenerative endodontic procedures. The aim of this study was to evaluate the cytocompatibility and cytotoxicity of a new endodontic biomaterial, PulpGuard, in comparison with two other biomaterials widely used in endodontic procedures, ProRoot Mineral Trioxide Aggregate (MTA) and Biodentine. Methods: Apical papilla cells (APCs) were isolated from third molars with incomplete rhizogenesis from patients with orthodontic indication for dental extraction. Cultured APCs were incubated for 24, 48, or 72 h with different dilutions of eluates prepared from the three materials. Cellular viability, mobility, and proliferation were assessed in vitro using the Alamar Blue assay and a wound-healing test. The cells were also cultured in direct contact with the surface of each material. These were then analyzed via Scanning Electron Microscopy (SEM), and the surface chemical composition was determined by Energy-Dispersive Spectroscopy (EDS). Results: Cells incubated in the presence of eluates extracted from ProRoot MTA and PulpGuard presented rates of viability comparable to those of control cells; in contrast, undiluted Biodentine eluates induced a significant reduction of cellular viability. The wound-healing assay revealed that eluates from ProRoot MTA and PulpGuard allowed for unhindered cellular migration and proliferation. Cellular adhesion was observed on the surface of all materials tested. Consistent with their disclosed composition, EDS analysis found high relative abundance of calcium in Biodentine and ProRoot MTA and high abundance of silicon in PulpGuard. Significant amounts of zinc and calcium were also present in PulpGuard discs. Concerning solubility, Biodentine and ProRoot MTA presented mild weight loss after eluate extraction, while PulpGuard discs showed significant water uptake. Conclusions: PulpGuard displayed a good in vitro cytocompatibility profile and did not significantly affect the proliferation and migration rates of APCs. Cells cultured in the presence of PulpGuard eluates displayed a similar profile to those cultured with eluates from the widely used endodontic cement ProRoot MTA.


2014 ◽  
Vol 4 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Alessandro Bertolo ◽  
Armin Gemperli ◽  
Marco Gruber ◽  
Benjamin Gantenbein ◽  
Martin Baur ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1241
Author(s):  
Lucélia Albarello Balestrin ◽  
Tainá Kreutz ◽  
Flávia Nathiely Silveira Fachel ◽  
Juliana Bidone ◽  
Nicolly Espindola Gelsleichter ◽  
...  

Achyrocline satureioides (Lam.) DC Asteraceae extracts (ASEs) have been investigated for the treatment of various skin disorders. This study reports the effects of ASE-loaded nanoemulsions (NEASE) on the cellular viability, death by necrosis, and migration of immortalized human keratinocytes (HaCaT cell line), as well as the irritant potential through the hen’s egg chorioallantoic membrane test (HET-CAM). NEASE exhibited a polydispersity index above 0.12, with a droplet size of 300 nm, ζ-potential of −40 mV, and content of flavonoids close to 1 mg/mL. No cytotoxicity of the ASE was observed on HaCaT by MTT assay (up to 10 µg/mL). A significant increase of HaCaT viability was observed to NEASE (up to 5 μg/mL of flavonoids), compared to treatment with the ASE. The necrosis death evaluation demonstrated that only NEASE did not lead to cell death at all the tested concentrations. The scratch assay demonstrated that NEASE was able to increase the cell migration at low flavonoid concentrations. Finally, the HET-CAM test proved the non-irritative potential of NEASE. Overall, the results indicate the potential of the proposed formulations for topical use in wound healing, in view of their promising effects on proliferation and migration in keratinocytes, combined with an indication of the absence of cytotoxicity and non-irritating potential.


2020 ◽  
Vol 7 ◽  
Author(s):  
Yikun Jiang ◽  
Jun Zhang ◽  
Zhengwei Li ◽  
Guoliang Jia

Recent evidence has demonstrated that mesenchymal stem cells (MSCs) can release a large number of functionally specific microRNA (miRNA) microvesicles that play a role in promoting osteogenic differentiation, but the specific mechanism is not yet clear. Under such context, this study aims to elucidate the mechanism of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exo) promoting fracture healing in mice. We isolated and identified the BMSC-Exo. Bioinformatics analysis predicted high expression of miRNA in exosomes and verified the transfer of miR-25 in exosomes by immunofluorescence. Targeting relationship between miR-25 and Smad ubiquitination regulatory factor-1 (SMURF1) was predicted and verified by dual-luciferase reporter gene assay. Immunoprecipitation and protein stability assays were used to detect Runt-related transcription factor 2 (Runx2) ubiquitination and the effect of SMURF1 on Runx2 ubiquitination, respectively. The effect of miR-25 in BMSC-Exo on fracture healing in mice was assessed using X-ray imaging. alkaline phosphatase, alizarin red staining, EdU, CCK-8, and Transwell were used to evaluate the effects of exosomes transferred miR-25 on osteogenic differentiation, proliferation, and migration of osteoblasts. Bioinformatics analysis predicted that miR-25 expression in exosomes increased significantly. Moreover, the targeted regulation of SMURF1 by miR-25 was verified. SMURF1 inhibited Runx2 protein expression by promoting ubiquitination degradation of Runx2. Notably, miR-25 secreted by BMSC-Exo can accelerate osteogenic differentiation, proliferation, and migration of osteoblasts through SMURF1/Runx2 axis. Our results demonstrate that miR-25 in BMSC-Exo regulates the ubiquitination degradation of Runx2 by SMURF1 to promote fracture healing in mice.


2019 ◽  
Vol 28 (11) ◽  
pp. 1404-1419
Author(s):  
Roger Esteban-Vives ◽  
Jenny Ziembicki ◽  
Myung Sun Choi ◽  
R. L. Thompson ◽  
Eva Schmelzer ◽  
...  

Various cell-based therapies are in development to address chronic and acute skin wound healing, for example for burns and trauma patients. An off-the-shelf source of allogeneic dermal cells could be beneficial for innovative therapies accelerating the healing in extensive wounds where the availability of a patient’s own cells is limited. Human fetal-derived dermal fibroblasts (hFDFs) show high in vitro division rates, exhibit low immunological rejection properties, and present scarless wound healing in the fetus, and previous studies on human fetal tissue-derived cell therapies have shown promising results on tissue repair. However, little is known about cell lineage stability and cell differentiation during the cell expansion process, required for any potential therapeutic use. We describe an isolation method, characterize a population, and investigate its potential for cell banking and thus suitability as a potential product for cell grafting therapies. Our results show hFDFs and a bone marrow-derived mesenchymal stem cell (BM-MSC) line shared identification markers and in vitro multilineage differentiation potential into osteogenic, chondrogenic, and adipogenic lineages. The hFDF population exhibited similar cell characteristics as BM-MSCs while producing lower pro-inflammatory cytokine IL-6 levels and higher levels of the wound healing factor hepatocyte growth factor. We demonstrate in vitro differentiation of hFDFs, which may be a problem in maintaining long-term lineage stability, potentially limiting their use for cell banking and therapy development.


2020 ◽  
Vol 10 (8) ◽  
pp. 2646
Author(s):  
Keng-Liang Ou ◽  
Yun-Wen Kuo ◽  
Chia-Yu Wu ◽  
Bai-Hung Huang ◽  
Fang-Tzu Pai ◽  
...  

The study elucidated the wound healing and hair regeneration properties of a conditioned medium prepared from the culture of human hair follicle mesenchymal stem cells (HFMSCs). The wound-healing effects of mesenchymal stem cell-conditioned medium (MSC-CM) were tested in vitro using scratch assays co-cultured with HaCaT keratinocyte and monitored through optical microscopy. The cell proliferation of HFMSCs and the HaCaT keratinocyte were observed in the presence of different kinds of drugs including UK5099, sodium L-lactate, lactate dehydrogenase-A, MSC-CM, caffeine, and caffeic acid. The hair regeneration properties were investigated in vivo by administrating the MSC-CM solutions to adult B6 mouse models. For quantification, hematoxylin and eosin staining were performed following euthanasia. In vitro results revealed that MSC-CM promotes dermal cell migrations and enhances proliferation of HFMSCs and HaCaT keratinocytes, demonstrating wound-healing properties. Moreover, when the MSC-CM solutions were applied to the shaved mouse skin, a dark area that expanded overtime was seen. Although no hair growth was found, histological analysis proved that a fat layer thickness increment was found under the mouse’s skin, ultimately projecting the formation of new hair growth. MSC-CM promotes the migration and proliferation of dermal keratinocytes that are beneficial for wound healing and hair growth. It is believed that MSC-CM can potentially serve as the basis of alternative therapeutic applications for wound closure and skin regeneration as well as hair growth stimulation and hair loss prevention in alopecia.


Sign in / Sign up

Export Citation Format

Share Document