scholarly journals Transcriptional regulatory network controlling the ontogeny of hematopoietic stem cells

2019 ◽  
Author(s):  
Peng Gao ◽  
Changya Chen ◽  
Elizabeth D. Howell ◽  
Yan Li ◽  
Joanna Tober ◽  
...  

AbstractHematopoietic stem cell (HSC) ontogeny is accompanied by dynamic changes in gene regulatory networks. We performed RNA-Seq and histone mark ChIP-Seq to define the transcriptomes and epigenomes of cells representing key developmental stages of HSC ontogeny in the mouse. The five populations analyzed were embryonic day 10.5 (E10.5) endothelium and hemogenic endothelium from the major arteries (dorsal aorta, umbilical and vitelline), an enriched population of pre-hematopoietic stem cells (pre-HSCs), fetal liver HSCs, and adult bone marrow HSCs. We observed dynamic and combinatorial epigenetic changes that mark regulatory DNA sequences including gene promoters and enhancers. Using epigenetic signatures, we identified enhancers for each developmental stage. Only 12% of enhancers are primed, and 78% are active, suggesting the vast majority of enhancers are established de novo at the developmental stages where they are required to control their target genes, without prior priming in earlier stages. We constructed developmental-stage-specific transcriptional regulatory networks during HSC ontogeny by linking enhancers and predicted bound transcription factors to their target promoters using a novel computational algorithm. Our computational analyses predicted known transcriptional regulators for the endothelial-to-hematopoietic transition, validating our overall approach, and identified putative novel transcription factors whose regulon activities correlate with the emergence of pre-HSCs. We validated roles for the broadly expressed transcription factors SP3 and MAZ in arterial hemogenic endothelium. Our data and computational analyses provide a useful resource for uncovering regulators of HSC formation.

2004 ◽  
Vol 24 (15) ◽  
pp. 6751-6762 ◽  
Author(s):  
Keita Kirito ◽  
Norma Fox ◽  
Kenneth Kaushansky

ABSTRACT Members of the homeobox family of transcription factors are major regulators of hematopoiesis. Overexpression of either HOXB4 or HOXA9 in primitive marrow cells enhances the expansion of hematopoietic stem cells (HSCs). However, little is known of how expression or function of these proteins is regulated during hematopoiesis under physiological conditions. In our previous studies we demonstrated that thrombopoietin (TPO) enhances levels of HOXB4 mRNA in primitive hematopoietic cells (K. Kirito, N. Fox, and K. Kaushansky, Blood 102:3172-3178, 2003). To extend our studies, we investigated the effects of TPO on HOXA9 in this same cell population. Although overall levels of the transcription factor were not affected, we found that TPO induced the nuclear import of HOXA9 both in UT-7/TPO cells and in primitive Sca-1+/c-kit+/Gr-1− hematopoietic cells in a mitogen-activated protein kinase-dependent fashion. TPO also controlled MEIS1 expression at mRNA levels, at least in part due to phosphatidylinositol 3-kinase activation. Collectively, TPO modulates the function of HOXA9 by leading to its nuclear translocation, likely mediated by effects on its partner protein MEIS1, and potentially due to two newly identified nuclear localization signals. Our data suggest that TPO controls HSC development through the regulation of multiple members of the Hox family of transcription factors through multiple mechanisms.


2020 ◽  
Vol 34 (13-14) ◽  
pp. 950-964 ◽  
Author(s):  
Peng Gao ◽  
Changya Chen ◽  
Elizabeth D. Howell ◽  
Yan Li ◽  
Joanna Tober ◽  
...  

2018 ◽  
Vol 64 ◽  
pp. S77
Author(s):  
Satish Khurana ◽  
Atreyi Biswas ◽  
Irene Roy ◽  
Sarah Schouteden ◽  
Joerg Huelsken ◽  
...  

Blood ◽  
2001 ◽  
Vol 97 (2) ◽  
pp. 419-425 ◽  
Author(s):  
Sahoko Matsuoka ◽  
Yasuhiro Ebihara ◽  
Ming-jiang Xu ◽  
Takefumi Ishii ◽  
Daisuke Sugiyama ◽  
...  

Abstract The CD34 antigen serves as an important marker for primitive hematopoietic cells in therapeutic transplantation of hematopoietic stem cells (HSC) and gene therapy, but it has remained an open question as to whether or not most HSC express CD34. Using a competitive long-term reconstitution assay, the results of this study confirm developmental changes in CD34 expression on murine HSC. In fetuses and neonates, CD34 was expressed on Lin−c-Kit+ long-term repopulating HSC of bone marrow (BM), liver, and spleen. However, CD34 expression on HSC decreased with aging, and in mice older than 10 weeks, HSC were most enriched in the Lin−c-Kit+CD34− marrow cell fraction. A second transplantation was performed from primary recipients who were transplanted with neonatal Lin−c-Kit+ CD34high HSC marrow. Although donor-type HSC resided in CD34-expressing cell fraction in BM cells of the first recipients 4 weeks after the first transplantation, the stem cell activity had shifted to Lin−c-Kit+CD34− cells after 16 weeks, indicating that adult Lin−c-Kit+CD34− HSC are the progeny of neonatal CD34-expresssing HSC. Assays for colony-forming cells showed that hematopoietic progenitor cells, unlike HSC, continue to express CD34 throughout murine development. The present findings are important because the clinical application of HSC can be extended, in particular as related to CD34-enriched HSC and umbilical cord blood HSC.


Blood ◽  
2016 ◽  
Vol 127 (10) ◽  
pp. 1234-1241 ◽  
Author(s):  
Koji Eto ◽  
Shinji Kunishima

Abstract Thrombocytopenia is defined as a status in which platelet numbers are reduced. Imbalance between the homeostatic regulation of platelet generation and destruction is 1 potential cause of thrombocytopenia. In adults, platelet generation is a 2-stage process entailing the differentiation of hematopoietic stem cells into mature megakaryocytes (MKs; known as megakaryopoiesis) and release of platelets from MKs (known as thrombopoiesis or platelet biogenesis). Until recently, information about the genetic defects responsible for congenital thrombocytopenia was only available for a few forms of the disease. However, investigations over the past 15 years have identified mutations in genes encoding >20 different proteins that are responsible for these disorders, which has advanced our understanding of megakaryopoiesis and thrombopoiesis. The underlying pathogenic mechanisms can be categorized as (1) defects in MK lineage commitment and differentiation, (2) defects in MK maturation, and (3) defect in platelet release. Using these developmental stage categories, we here update recently described mechanisms underlying megakaryopoiesis and thrombopoiesis and discuss the association between platelet generation systems and thrombocytopenia.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1478-1478
Author(s):  
Kathryn M. Shinnick ◽  
Kelly A. Barry ◽  
Elizabeth A. Eklund ◽  
Thomas J. McGarry

Abstract Abstract 1478 Poster Board I-501 Hematopoietic stem cells supply the circulation with mature blood cells throughout life. Progenitor cell division and differentiation must be carefully balanced in order to supply the proper numbers and proportions of mature cells. The mechanisms that control the choice between continued cell division and terminal differentiation are incompletely understood. The unstable regulatory protein Geminin is thought to maintain cells in an undifferentiated state while they proliferate. Geminin is a bi-functional protein. It limits the extent of DNA replication to one round per cell cycle by binding and inhibiting the essential replication factor Cdt1. Loss of Geminin leads to replication abnormalities that activate the DNA replication checkpoint and the Fanconi Anemia (FA) pathway. Geminin also influences patterns of cell differentiation by interacting with Homeobox (Hox) transcription factors and chromatin remodeling proteins. To examine how Geminin affects the proliferation and differentiation of hematopoietic stem cells, we created a mouse strain in which Geminin is deleted from the proliferating cells of the bone marrow. Geminin deletion has profound effects on all three hematopoietic lineages. The production of mature erythrocytes and leukocytes is drastically reduced and the animals become anemic and neutropenic. In contrast, the population of megakaryocytes is dramatically expanded and the animals develop thrombocytosis. Interestingly, the number of c-Kit+ Sca1+ Lin- (KSL) stem cells is maintained, at least in the short term. Myeloid colony forming cells are also preserved, but the colonies that grow are smaller. We conclude that Geminin deletion causes a maturation arrest in some lineages and directs cells down some differentiation pathways at the expense of others. We are now testing how Geminin loss affects cell cycle checkpoint pathways, whether Geminin regulates hematopoietic transcription factors, and whether Geminin deficient cells give rise to leukemias or lymphomas. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 719-721 ◽  
Author(s):  
Friedrich Harder ◽  
Reinhard Henschler ◽  
Ilse Junghahn ◽  
Marinus C. Lamers ◽  
Albrecht M. Müller

Abstract At different developmental stages, candidate human hematopoietic stem cells (HSCs) are present within the CD34+ CD38− population. By means of xenotransplantation, such CD34+CD38− cells were recently shown to engraft the hematopoietic system of fetal sheep and nonobese diabetic severe combined immunodeficient adult mice. Here it is demonstrated that, after their injection into murine blastocysts, human cord blood (CB)–derived CD34+and CD34+ CD38− cells repopulate the hematopoietic tissues of nonimmunocompromised murine embryos and that human donor contribution can persist to adulthood. It is further observed that human hematopoietic progenitor cells are present in murine hematopoietic tissues of midgestational chimeric embryos and that progeny of the injected human HSCs activate erythroid-specific gene expression. Thus, the early murine embryo provides a suitable environment for the survival and differentiation of human CB CD34+ CD38− cells.


Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 5849-5858 ◽  
Author(s):  
Peter Papathanasiou ◽  
Robert Tunningley ◽  
Diwakar R. Pattabiraman ◽  
Ping Ye ◽  
Thomas J. Gonda ◽  
...  

Abstract Identification of genes that regulate the development, self-renewal, and differentiation of stem cells is of vital importance for understanding normal organogenesis and cancer; such knowledge also underpins regenerative medicine. Here we demonstrate that chemical mutagenesis of mice combined with advances in hematopoietic stem cell reagents and genome resources can efficiently recover recessive mutations and identify genes essential for generation and proliferation of definitive hematopoietic stem cells and/or their progeny. We used high-throughput fluorescence-activated cell sorter to analyze 9 subsets of blood stem cells, progenitor cells, circulating red cells, and platelets in more than 1300 mouse embryos at embryonic day (E) 14.5. From 45 pedigrees, we recovered 6 strains with defects in definitive hematopoiesis. We demonstrate rapid identification of a novel mutation in the c-Myb transcription factor that results in thrombocythemia and myelofibrosis as proof of principal of the utility of our fluorescence-activated cell sorter–based screen. Such phenotype-driven approaches will provide new knowledge of the genes, protein interactions, and regulatory networks that underpin stem cell biology.


2000 ◽  
Vol 192 (12) ◽  
pp. 1785-1796 ◽  
Author(s):  
Bianca Blom ◽  
Stephen Ho ◽  
Svetlana Antonenko ◽  
Yong-Jun Liu

Upon viral stimulation, the natural interferon (IFN)-α/β–producing cells (IPCs; also known as pre-dendritic cells (DCs 2) in human blood and peripheral lymphoid tissues rapidly produce huge amounts of IFN-α/β. After performing this innate antiviral immune response, IPCs can differentiate into DCs and strongly stimulate T cell–mediated adaptive immune responses. Using four-color immunofluorescence flow cytometry, we have mapped the developmental pathway of pre-DC2/IPCs from CD34+ hematopoietic stem cells in human fetal liver, bone marrow, and cord blood. At least four developmental stages were identified, including CD34++CD45RA− early progenitor cells, CD34++CD45RA+ late progenitor cells, CD34+CD45RA++CD4+interleukin (IL)-3Rα++ pro-DC2, and CD34−CD45RA++ CD4+IL-3Rα++ pre-DC2/IPCs. Pro-DC2s have already acquired the capacity to produce large amounts of IFN-α/β upon viral stimulation and to differentiate into DCs in culture with IL-3 and CD40 ligand. CD34++CD45RA− early progenitor cells did not have the capacity to produce large amounts of IFN-α/β in response to viral stimulation; however, they can be induced to undergo proliferation and differentiation into IPCs/pre-DC2 in culture with FLT3 ligand.


Sign in / Sign up

Export Citation Format

Share Document