scholarly journals Identification and disruption of an Arabidopsis zinc finger gene controlling seed germination

2000 ◽  
Vol 14 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Maura Papi ◽  
Sabrina Sabatini ◽  
David Bouchez ◽  
Christine Camilleri ◽  
Paolo Costantino ◽  
...  

We describe here the Arabidopsis gene DAG1, encoding a zinc finger transcription factor of the Dof family, and show that it is involved in the control of seed germination. By a reverse genetics approach, we isolated an Arabidopsis mutant line with one T-DNA insertion in DAG1. Seeds from homozygous knockoutdag1-1 plants do not develop dormancy and germinate also in the absence of light. Segregation analysis indicates that the effect of the mutation is maternal. Accordingly, in situ mRNA hybridizations reveal expression of DAG1 in the vascular tissue of the flower and maturing fruit but not in the seed.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


BMC Genomics ◽  
2009 ◽  
Vol 10 (1) ◽  
pp. 241 ◽  
Author(s):  
Jianzhong Li ◽  
Xia Chen ◽  
Xuelian Gong ◽  
Ying Liu ◽  
Hao Feng ◽  
...  

2010 ◽  
Vol 14 (5) ◽  
pp. 575-586 ◽  
Author(s):  
Ingrid E. Frohner ◽  
Christa Gregori ◽  
Dorothea Anrather ◽  
Elisabeth Roitinger ◽  
Christoph Schüller ◽  
...  

2017 ◽  
Vol 199 (7) ◽  
pp. 2377-2387 ◽  
Author(s):  
Kaitlin A. Read ◽  
Michael D. Powell ◽  
Chandra E. Baker ◽  
Bharath K. Sreekumar ◽  
Veronica M. Ringel-Scaia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document