scholarly journals Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation

2017 ◽  
Vol 31 (21) ◽  
pp. 2162-2174 ◽  
Author(s):  
Yoo Jin Joo ◽  
Scott B. Ficarro ◽  
Luis M. Soares ◽  
Yujin Chun ◽  
Jarrod A. Marto ◽  
...  
2019 ◽  
Vol 47 (18) ◽  
pp. 9573-9591 ◽  
Author(s):  
Nathalie Legrand ◽  
Clemens L Bretscher ◽  
Svenja Zielke ◽  
Bernhard Wilke ◽  
Michael Daude ◽  
...  

Abstract In the absence of ligands, the nuclear receptor PPARβ/δ recruits the NCOR and SMRT corepressors, which form complexes with HDAC3, to canonical target genes. Agonistic ligands cause dissociation of corepressors and enable enhanced transcription. Vice versa, synthetic inverse agonists augment corepressor recruitment and repression. Both basal repression of the target gene ANGPTL4 and reinforced repression elicited by inverse agonists are partially insensitive to HDAC inhibition. This raises the question how PPARβ/δ represses transcription mechanistically. We show that the PPARβ/δ inverse agonist PT-S264 impairs transcription initiation by decreasing recruitment of activating Mediator subunits, RNA polymerase II, and TFIIB, but not of TFIIA, to the ANGPTL4 promoter. Mass spectrometry identifies NCOR as the main PT-S264-dependent interactor of PPARβ/δ. Reconstitution of knockout cells with PPARβ/δ mutants deficient in basal repression results in diminished recruitment of NCOR, SMRT, and HDAC3 to PPAR target genes, while occupancy by RNA polymerase II is increased. PT-S264 restores binding of NCOR, SMRT, and HDAC3 to the mutants, resulting in reduced polymerase II occupancy. Our findings corroborate deacetylase-dependent and -independent repressive functions of HDAC3-containing complexes, which act in parallel to downregulate transcription.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Wooyoung Kang ◽  
Kook Sun Ha ◽  
Heesoo Uhm ◽  
Kyuhyong Park ◽  
Ja Yil Lee ◽  
...  

2003 ◽  
Vol 28 (4) ◽  
pp. 202-209 ◽  
Author(s):  
Giorgio Dieci ◽  
André Sentenac

2003 ◽  
Vol 23 (1) ◽  
pp. 335-348 ◽  
Author(s):  
Mari Luz Acevedo ◽  
W. Lee Kraus

ABSTRACT Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromatin assembly and transcription system, to examine the functional role for Mediator in the transcriptional activity of estrogen receptor α (ERα) with chromatin templates, as well as functional interplay between Mediator and p300/CBP during ERα-dependent transcription. Using three different approaches to functionally inactivate Mediator (immunoneutralization, immunodepletion, and inhibitory polypeptides), we find that Mediator is required for maximal transcriptional activation by ligand-activated ERα. In addition, we demonstrate synergism between Mediator and p300/CBP-SRC during ERα-dependent transcription with chromatin templates, but not with naked DNA. This synergism is important for promoting the formation of a stable transcription preinitiation complex leading to the initiation of transcription. Interestingly, we find that Mediator has an additional distinct role during ERα-dependent transcription not shared by p300/CBP-SRC: namely, to promote preinitiation complex formation for subsequent rounds of transcription reinitiation. These results suggest that one functional consequence of Mediator-ERα interactions is the stimulation of multiple cycles of transcription reinitiation. Collectively, our results indicate an important role for Mediator, as well as its functional interplay with p300/CBP-SRC, in the enhancement of ERα-dependent transcription with chromatin templates.


Nature ◽  
2000 ◽  
Vol 408 (6809) ◽  
pp. 225-229 ◽  
Author(s):  
Natalya Yudkovsky ◽  
Jeffrey A. Ranish ◽  
Steven Hahn

2017 ◽  
Author(s):  
Yoo Jin Joo ◽  
Scott B. Ficarro ◽  
Luis M. Soares ◽  
Yujin Chun ◽  
Jarrod A. Marto ◽  
...  

AbstractTFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-Binding Protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-Associated Factor (TAF) subunits recognize downstream promoter elements, act as co-activators, and interact with nucleosomes. Here we show that transcription induces stable TAF binding to downstream promoter DNA, independent of upstream contacts, TBP, or other basal transcription factors. This transcription-dependent TAF complex promotes subsequent activator-independent transcription, and promoter response to TAF mutations in vivo correlates with the level of downstream, rather than overall, Taf1 crosslinking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations.


1997 ◽  
Vol 17 (7) ◽  
pp. 3809-3816 ◽  
Author(s):  
D Yean ◽  
J Gralla

Promoters need to specify both the timing of transcriptional induction and the amount of transcript synthesized. In order to explore each of these effects separately, in vitro assays for the level of active preinitiation complex formation and for the rate of continuous RNA production were done. The effects were found to be influenced differently by different promoter elements. A consensus TATA element had a very strong effect on the rate of continuous RNA production, whereas two types of activators were important primarily in forming active transcription preinitiation complexes. Consensus TATA promoters exhibited high rates of continuous transcription; they assembled active preinitiation transcription complexes slowly but then produced transcripts continuously at an approximately fivefold-higher rate. Initiator-containing TATA-less promoters produced continuous transcripts slowly. Point mutations in the TATA element led to lower levels of transcription by reducing the number of preinitiation complexes and amplifying this reduction by lowering the apparent reinitiation rate. The results allow understanding of the sequence diversity of promoter elements in terms of specifying separate controls over the sensitivity of gene induction and over the strength of the induced promoter.


2004 ◽  
Vol 24 (4) ◽  
pp. 1709-1720 ◽  
Author(s):  
P. Geetha Rani ◽  
Jeffrey A. Ranish ◽  
Steven Hahn

ABSTRACT Protein purification and depletion studies were used to determine the major stable forms of RNA polymerase II (Pol II) complexes found in Saccharomyces cerevisiae nuclear extracts. About 50% of Pol II is found associated with the general transcription factor TFIIF (Pol II-TFIIF), and about 20% of Pol II is associated with Mediator (Pol-Med). No Pol II-Med-TFIIF complex was observed. The activity of Pol II and the purified Pol II complexes in transcription initiation and reinitiation was investigated by supplementing extracts depleted of either total Pol II or total TFIIF with purified Pol II or the Pol II complexes. We found that all three forms of Pol II can complement Pol II-depleted extracts for transcription initiation, but Pol II-TFIIF has the highest specific activity. Similarly, Pol II-TFIIF has a much higher specific activity than TFIIF for complementation of TFIIF transcription activity. Although the Pol II-TFIIF and Pol II-Med complexes were stable when purified, we found these complexes were dynamic in extracts under transcription conditions, with a single polymerase capable of exchanging bound Mediator and TFIIF. Using a purified system to examine transcription reinitiation, we found that Pol II-TFIIF was active in promoting multiple rounds of transcription while Pol II-Med was nearly inactive. These results suggest that both the Pol II-Med and Pol II-TFIIF complexes can be recruited for transcription initiation but that only the Pol II-TFIIF complex is competent for transcription reinitiation.


Sign in / Sign up

Export Citation Format

Share Document