scholarly journals CBX3 regulates efficient RNA processing genome-wide

2012 ◽  
Vol 22 (8) ◽  
pp. 1426-1436 ◽  
Author(s):  
A. Smallwood ◽  
G. C. Hon ◽  
F. Jin ◽  
R. E. Henry ◽  
J. M. Espinosa ◽  
...  
Keyword(s):  
Nature ◽  
2008 ◽  
Vol 456 (7221) ◽  
pp. 464-469 ◽  
Author(s):  
Donny D. Licatalosi ◽  
Aldo Mele ◽  
John J. Fak ◽  
Jernej Ule ◽  
Melis Kayikci ◽  
...  
Keyword(s):  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1301-1301
Author(s):  
Yusuke Okamoto ◽  
Masako Abe ◽  
Akiko Itaya ◽  
Junya Tomida ◽  
Akifumi Takaori-Kondo ◽  
...  

Abstract Background: Fanconi anemia proteins, encoded by at least 22genes (FANCA-W), constitute the Interstrand Cross Link (ICL) repair pathway. While FANCD2 is a master regulator of ICL repair, it accumulates at common fragile sites (CFS) during mild replication stress stimulated by low-dose Aphidicolin (APH) treatment. A recent study indicated that FANCD2 is required for efficient genome replication across the CFS regions. FANCD2 is also implicated in the regulation of R-loops levels. R-loops, which consist of DNA: RNA hybrids and displaced single-stranded DNA, are physiologically relevant in the genome and associate with immunoglobulin class switching, replication of mitochondrial DNA as well as transcriptional promoters or terminators. However, in any case, untimely formation of R-loops is a major threat to genome instability. Furthermore, it has been reported that R-loops which are induced by common slicing factor mutations in cases with myelodysplastic syndrome are linked to compromised proliferation of hematopoietic progenitors. It is also interesting to note that a recent study shows an interaction of FANCD2 with splicing factor 3B1 (SF3B1) and proposes their role in organizing chromatin domains to ensure coordination of replication and co-transcriptional processes. Methods: To examine the genome-wide distribution of FANCD2 protein, we set out to create a derivative of human osteosarcoma cell line, U2OS, which incorporated a 3×FLAG tag into the FANCD2 termination codon by genome editing. We performed chromatin-immunoprecipitation and sequencing (ChIP-Seq) analysis, and provide a genome-wide landscape of replication stress response involving FANCD2 in this cell line. Moreover, we purified the FANCD2 complex and analyzed by liquid chromatography-tandem mass spectrometry, and confirmed this interaction by co-immunoprecipitation (Co-IP) and proximal ligation assay (PLA) with FANCD2-3xFLAG. R-loops levels were assayed as the number of S9.6 (anti DNA:RNA hybrid antibody) stained foci per nucleus. Results: FANCD2 accumulation mostly occurs in the central portion of large transcribed genes, including CFS, and its accumulation appeared to be dependent on R-loop formation induced by transcription-replication collisions during mild replication stress. Moreover, our mass spectrometry analysis identified that FANCD2 interacts with several RNA processing factors including heterogeneous nucleoprotein U (hnRNP U), or DEAD box protein 47 (DDX47). We confirmed the interaction of these factors with FANCD2 by Co-IP as well as PLA. It was previously reported that defects in RNA-processing factors result in R-loop accumulation associated genome instability. Indeed, we found that treatment with siRNA against hnRNP U or DDX47 resulted in the increased number of the S9.6 foci. Furthermore, FANCD2 and hnRNP U or DDX47 appeared to function in an epistatic manner in suppressing APH-induced transcription-replication collisions as detected by PLA between PCNA and RNA polymerase II. Conclusion: We suggest that FANCD2 protects genome stability by recruiting RNA processing enzymes, including hnRNP U or DDX47, to resolve or prevent accumulation of R-loops induced by transcription-replication collisions during mild replication stress. Thus, our study may provide a novel insight to understand the mechanism of bone marrow failure and leukemogenesis in Fanconi anemia patients. Disclosures Takaori-Kondo: Bristol-Myers Squibb: Honoraria; Pfizer: Honoraria; Celgene: Honoraria, Research Funding; Novartis: Honoraria; Janssen Pharmaceuticals: Honoraria.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Katarzyna Chyżyńska ◽  
Kornel Labun ◽  
Carl Jones ◽  
Sushma N Grellscheid ◽  
Eivind Valen

Abstract The rate of translation can vary depending on the mRNA template. During the elongation phase the ribosome can transiently pause or permanently stall. A pause can provide the nascent protein with the time to fold or be transported, while stalling can serve as quality control and trigger degradation of aberrant mRNA and peptide. Ribosome profiling has allowed for the genome-wide detection of such pauses and stalls, but due to library-specific biases, these predictions are often unreliable. Here, we take advantage of the deep conservation of protein synthesis machinery, hypothesizing that similar conservation could exist for functionally important locations of ribosome slowdown, here collectively called stall sites. We analyze multiple ribosome profiling datasets from phylogenetically diverse eukaryotes: yeast, fruit fly, zebrafish, mouse and human to identify conserved stall sites. We find thousands of stall sites across multiple species, with the enrichment of proline, glycine and negatively charged amino acids around conserved stalling. Many of the sites are found in RNA processing genes, suggesting that stalling might have a conserved role in RNA metabolism. In summary, our results provide a rich resource for the study of conserved stalling and indicate possible roles of stalling in gene regulation.


2020 ◽  
Author(s):  
Katarzyna Chyżyńska ◽  
Kornel Labun ◽  
Carl Jones ◽  
Sushma N. Grellscheid ◽  
Eivind Valen

AbstractThe rate of translation can vary considerably depending on the mRNA template. During the elongation phase the ribosome can transiently pause or permanently stall. A pause can provide the nascent protein with the required time to fold or be transported, while stalling can serve as quality control and trigger degradation of aberrant mRNA and peptide. Ribosome profiling has allowed for the genome-wide detection of such pause and stall sites, but due to library-specific biases, these predictions are often unreliable.Here, we address this by taking advantage of the deep conservation of the protein synthesis machinery, hypothesizing that similar conservation could exist for functionally important positions of ribosome slowdown - here collectively called stall sites. We analyze multiple ribosome profiling datasets from a phylogenetically diverse group of eukaryotes: yeast, fruit fly, zebrafish, mouse, and human and identify conserved stall sites. We find thousands of stall sites across multiple species, with proline, glycine, and negatively charged amino acids being the main facilitators of stalling. Many of the sites are found in RNA processing genes, suggesting that stalling might have a conserved regulatory effect on RNA metabolism. In summary, our results provide a rich resource for the study of conserved stalling and indicate possible roles of stalling in gene regulation.


2019 ◽  
Author(s):  
Emese Xochitl Szabo ◽  
Philipp Reichert ◽  
Marie-Kristin Lehniger ◽  
Marilena Ohmer ◽  
Marcella de Francisco Amorim ◽  
...  

AbstractTranscriptome analysis by RNA sequencing (RNA-seq) has become an indispensable core research tool in modern plant biology. Virtually all RNA-seq studies provide a snapshot of the steady-state transcriptome, which contains valuable information about RNA populations at a given time, but lacks information about the dynamics of RNA synthesis and degradation. Only a few specialized sequencing techniques, such as global run-on sequencing (GRO-seq), have been applied in plants and provide information about RNA synthesis rates. Here, we demonstrate that RNA labeling with a modified, non-toxic uridine analog, 5-ethynyl uridine (5-EU), in Arabidopsis thaliana seedlings provides insight into the dynamic nature of a plant transcriptome. Pulse-labeling with 5-EU allowed the detection and analysis of nascent and unstable RNAs, of RNA processing intermediates generated by splicing, and of chloroplast RNAs. We also conducted pulse-chase experiments with 5-EU, which allowed us to determine RNA stabilities without the need for chemical inhibition of transcription using compounds such as actinomycin and cordycepin. Genome-wide analysis of RNA stabilities by 5-EU pulse-chase experiments revealed that this inhibitor-free RNA stability measurement results in RNA half-lives much shorter than those reported after chemical inhibition of transcription. In summary, our results show that the Arabidopsis nascent transcriptome contains unstable RNAs and RNA processing intermediates, and suggest that half-lives of plant RNAs are largely overestimated. Our results lay the ground for an easy and affordable nascent transcriptome analysis and inhibitor-free analysis of RNA stabilities in plants.


2018 ◽  
Author(s):  
Divya T. Kandala ◽  
Alessia Del Piano ◽  
Luca Minati ◽  
Massimiliano Clamer

ABSTRACTPuromycin is a well-known antibiotic that is used to study the mechanism of protein synthesis and to monitor translation efficiency due to its incorporation into nascent peptide chains. However, puromycin effects outside the ribo-some catalytic core remain unexplored. Here, we developed two puromycin analogues (3PB and 3PC) that can efficiently interact with several proteins involved in translation, ribosome function and RNA processing. We biochemically characterized the binding of these analogues and globally mapped the direct small molecule-protein interactions in living cells using clickable and photoreactive puromycin-like probes in combination with in-depth mass spectrometry. We identified a list of proteins that interact with ribosomes during translation (e.g. eEF1A, ENO1 and GRP78) and we addressed possible uses of the probes to sense the activity of protein synthesis and to capture associated RNA. By coupling genome-wide RNA sequencing methods with these molecules, the characterization of unexplored translational control mechanisms will be feasible.


2006 ◽  
Vol 17 (12) ◽  
pp. 5105-5114 ◽  
Author(s):  
Hui Zhu ◽  
Robert A. Hasman ◽  
Victoria A. Barron ◽  
Guangbin Luo ◽  
Hua Lou

Recent advances in genome-wide analysis of alternative splicing indicate that extensive alternative RNA processing is associated with many proteins that play important roles in the nervous system. Although differential splicing and polyadenylation make significant contributions to the complexity of the nervous system, our understanding of the regulatory mechanisms underlying the neuron-specific pathways is very limited. Mammalian neuron-specific embryonic lethal abnormal visual-like Hu proteins (HuB, HuC, and HuD) are a family of RNA-binding proteins implicated in neuronal differentiation and maintenance. It has been established that Hu proteins increase expression of proteins associated with neuronal function by up-regulating mRNA stability and/or translation in the cytoplasm. We report here a novel function of these proteins as RNA processing regulators in the nucleus. We further elucidate the underlying mechanism of this regulation. We show that in neuron-like cells, Hu proteins block the activity of TIA-1/TIAR, two previously identified, ubiquitously expressed proteins that promote the nonneuronal pathway of calcitonin/calcitonin gene-related peptide (CGRP) pre-mRNA processing. These studies define not only the first neuron-specific regulator of the calcitonin/CGRP system but also the first nuclear function of Hu proteins.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 507-507
Author(s):  
Eric Wang ◽  
Jose Mario Bello Pineda ◽  
Jessie Bourcier ◽  
Maximilian Stahl ◽  
Alexander V Penson ◽  
...  

Abstract Resistance to therapy is one of the most significant challenges in the treatment of acute myeloid leukemia (AML). While great efforts have uncovered genetic mechanisms of resistance to certain AML-directed therapies, to date, treatment resistance in AML has only partially explained by acquired genetic alterations. Here, we performed genome-wide CRISPR/Cas9 screens to identify drug-gene interactions that modulate therapeutic response to treatments commonly used in AML. Interestingly, our findings uncovered several genes that regulate pre-mRNA splicing whose loss strongly synergized with venetoclax, a BH3 mimetic that blocks the antiapoptotic protein BCL-2. To further delineate the role of RNA processing in response to AML treatments, we performed secondary CRISPR screens with a domain-focused gRNA library targeting 490 RNA processing factors in the presence of various AML drugs. Overall, these genetic screens identified a number of RNA splicing factors whose loss-of-function sensitized AML cells to BCL2 inhibition (Fig. A). Among the top gene candidates whose loss promoted venetoclax efficacy was the splicing factor RBM10 (Fig.B). Strikingly, loss of RBM10 exclusively synergized with venetoclax-based treatments across AML therapeutics, including in TP53 mutant lines (Fig.C-D). Moreover, RBM10 loss restored venetoclax sensitivity to AML cell line variants with acquired venetoclax resistance. Interestingly, while many RNA splicing factors are pan-essential, generation of an Rbm10 conditional knockout mouse revealed that Rbm10 is completely dispensable for steady-state normal hematopoiesis (Fig.E). Since RBM10 has not been studied previously in hematopoiesis, we mapped the impact of RBM10 on mRNA expression and splicing using RNA-seq and direct RNA binding partners genome-wide by eCLIP-Seq (Fig. F). RBM10 loss was strongly associated with downregulation of BCL2A1, an anti-apoptotic factor whose expression is correlated with venetoclax resistance in AML (Fig.G-H). This was dependent on RBM10's ability to bind RNA and expression of BCL2A1 cDNA fully rescued the growth-inhibitory effect of RBM10 KO-venetoclax treated AML cells. Overall, the above data support RBM10 as a synthetic lethal vulnerability in venetoclax therapy. Beyond RBM10, our genetic screens also identified several splicing factors belonging to the family of serine and arginine-rich (SR) proteins whose loss synergized with venetoclax treatment (Fig. I). SR proteins are essential for pre-mRNA splicing and are substrates for phosphorylation by conserved family of kinases, such as Cdc2-like kinases (CLKs) and (dual-specificity tyrosine-regulated kinases) DYRKs. We therefore utilized a series of selective pan-CLK/DYRK1A inhibitors, including SM09419 and SM08502, that potently suppress SR protein phosphorylation. Interestingly, BCL2 is one of the top genetic dependencies upon DYRK1A genetic suppression in prior work from the DepMap (Fig. J). Pharmacologic inhibition of CLK/DYRK1A exhibited high in vitro efficacy at nanomolar range across a diverse range of AML subtypes including cell lines with acquired venetoclax resistance (Fig.K). Consistent with this, combined SM09419 and venetoclax displayed synergistic anti-leukemic effects and venetoclax-sensitive AML cell lines (Fig.L). Taken together, these data support the notion of targeting CLK/DYRK1A in the context of BCL2 inhibition. In this study, we systematically defined gene interactions that mediate the response to a wide range of AML drugs. Recent studies have begun to show that dysfunctional RNA processing promotes AML development. However, the role of RNA processing in modulating drug responsiveness in AML is not well understood. Here, we have uncovered that synthetic lethal targeting of splicing factors, such as RBM10, increases sensitivity of AML cells to BCL2 inhibition. Therapeutically, pharmacologic inhibition of SR protein function via inhibiting CLK/DYRK1A-mediated phosphorylation of splicing factors is an effective strategy used in combination with venetoclax or to overcome venetoclax resistance. Overall, our findings underscore the central importance of RNA splicing in drug response and provides a therapeutic rationale for modulating RNA splicing to enhance current AML therapies. Figure 1 Figure 1. Disclosures McMillan: Prizer: Ended employment in the past 24 months. Bossard: Biosplice Therapeutics: Current Employment. Aifantis: AstraZeneca: Research Funding; Foresite (FL2020-010) LLC: Consultancy. Abdel-Wahab: H3B Biomedicine: Consultancy, Research Funding; Foundation Medicine Inc: Consultancy; Merck: Consultancy; Prelude Therapeutics: Consultancy; LOXO Oncology: Consultancy, Research Funding; Lilly: Consultancy; AIChemy: Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Envisagenics Inc.: Current holder of stock options in a privately-held company, Membership on an entity's Board of Directors or advisory committees.


2016 ◽  
Vol 11 (3) ◽  
pp. 413-428 ◽  
Author(s):  
Takayuki Nojima ◽  
Tomás Gomes ◽  
Maria Carmo-Fonseca ◽  
Nicholas J Proudfoot

Sign in / Sign up

Export Citation Format

Share Document