scholarly journals Low-frequency somatic copy number alterations in normal human lymphocytes revealed by large-scale single-cell whole-genome profiling

2021 ◽  
Author(s):  
Lu Liu ◽  
He Chen ◽  
Cheng Sun ◽  
Jianyun Zhang ◽  
Juncheng Wang ◽  
...  

Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence rates and the structural variations’ stochastic natures. Using a Tn5-transposase-assisted single-cell whole-genome sequencing method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thousand single cells per individual, we found that about 7.5% of the cells had large-size copy number alterations. Trisomy 21 was the most prevalent aneuploid event among all autosomal copy number alterations, whereas monosomy X occurred most frequently in over-30-yr-old females. In the monosomy X single cells from individuals with phased genomes and identified X-inactivation ratios in bulk, the inactive X Chromosomes were lost more often than the active ones.

2021 ◽  
Author(s):  
Lu Liu ◽  
He Chen ◽  
Cheng Sun ◽  
Jianyun Zhang ◽  
Juncheng Wang ◽  
...  

Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence rates and the structural variations' stochastic natures. Using a Tn5-transposase assisted single-cell whole genome sequencing method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thousand single cells per individual, we found that about 7.5% of the cells had large-size copy number alterations. Trisomy 21 was the most prevalent aneuploid event among all autosomal copy number alterations, while monosomy X occurred most frequently in over-30-year-old females. In the monosomy X single cells from individuals with phased genomes and identified X- inactivation ratios in bulk, the inactive X Chromosomes were lost more often than were the active ones.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 122-122
Author(s):  
Nicola E Potter ◽  
Luca Ermini ◽  
Elli Papaemmanuil ◽  
Gowri Vijayaraghavan ◽  
Ian Titley ◽  
...  

Abstract Abstract 122 Cancer clone development is widely regarded as an evolutionary or Darwinian process of genetic diversification and natural (or therapeutic) selection within tissue ecosystems. Emerging studies are providing strong evidence that dynamic and complex branching sub-clonal genetic architectures are a common feature of cancer (Greaves M and Maley CC Nature 2012). This complexity may underpin the intransigence of advanced cancer to therapeutic control, particularly as the critical 'driver' cells – cancer or leukaemic stem cells, also appear to be genetically diverse within individual patients (Anderson K et al Nature 2011, Notta F et al Nature 2011). Sub-clonal architecture can only be fully determined through the study of large numbers of single cells uniformly sampled from the individual cancer of interest and assessed for composite genotype. Various technologies and approaches from fluorescent in situ hybridisation (FISH) to whole-genome sequencing of single cells have been applied to cancer and leukaemic cells but each approach has limitations. We have developed a novel multiplex microfluidic Q-PCR approach that allows unbiased single cell sampling, high throughput analysis of hundreds of individual cells and simultaneous detection of multiple genetic alterations in a single cell, including fusion genes, DNA copy number alterations (CNAs) and sequence-based mutations. As a proof of principle study we have applied this technique to REH, an acute lymphoblastic leukaemia (ALL) cell line that harbors the ETV6-RUNX1 fusion and a SNP in the EPO receptor gene, which we used as a surrogate mutation. We further determined a detailed sub-clonal genetic architecture for two ETV6-RUNX1 positive ALL patient samples with multiple point mutations and copy number alterations (determined by whole-genome sequencing) by interrogating approximately 400 flow cytometry sorted single cells with validation by FISH and standard sequencing. Briefly, single cells were lysed prior to multiplex specific (DNA) target amplification (STA) and Q-PCR using the 96.96 dynamic microfluidic array and the BioMarkï HD (Fluidigm, UK). Phylogenetic trees were constructed using maximum parsimony with PAUP analysis software. Interrogation of REH revealed that all single cells registered the ETV6-RUNX1 fusion and EPO receptor SNP, but 42% of cells gained either 1 or 2 additional copies of chromosome 21. Patient sample data revealed branching sub-clonal architectures in Case A in which all leukaemic cells harbored the fusion with additional point mutations but only sub-clones showed CNAs. In contrast, the sub-clonal architecture of Case B showed that whilst the ETV6-RUNX1 fusion was the earliest (or universal) genomic event, CNAs were relatively early events preceding the acquisition of point mutations (Figure 1). In both cases, the numerically predominant sub-clone harbored both point mutations and CNAs in addition to the presumptive initiating lesion, ETV6-RUNX1. These detailed and complex sub-clonal architectures would be masked by other genetic techniques. Single cell genetics coupled with deep genome sequencing is now technically feasible and provides an accurate portrait of the dynamic clonal complexity in leukaemia (and other cancers). Variegated genetics and clonal complexity in individual leukaemias has important implications for our understanding of molecular pathogenesis and for therapeutic targeting. Figure 1. This sub-clonal genetic architecture depicts the branching structure found for Case B, illustrating that in this case the ETV6-RUNX1 fusion was the earliest genomic event, followed by CNAs and the acquisition of point mutations. Those populations highlighted grey are within the experimental error rate but potentially true populations. Figure 1. This sub-clonal genetic architecture depicts the branching structure found for Case B, illustrating that in this case the ETV6-RUNX1 fusion was the earliest genomic event, followed by CNAs and the acquisition of point mutations. Those populations highlighted grey are within the experimental error rate but potentially true populations. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii408-iii408
Author(s):  
Marina Danilenko ◽  
Masood Zaka ◽  
Claire Keeling ◽  
Stephen Crosier ◽  
Rafiqul Hussain ◽  
...  

Abstract Medulloblastomas harbor clinically-significant intra-tumoral heterogeneity for key biomarkers (e.g. MYC/MYCN, β-catenin). Recent studies have characterized transcriptional heterogeneity at the single-cell level, however the underlying genomic copy number and mutational architecture remains to be resolved. We therefore sought to establish the intra-tumoural genomic heterogeneity of medulloblastoma at single-cell resolution. Copy number patterns were dissected by whole-genome sequencing in 1024 single cells isolated from multiple distinct tumour regions within 16 snap-frozen medulloblastomas, representing the major molecular subgroups (WNT, SHH, Group3, Group4) and genotypes (i.e. MYC amplification, TP53 mutation). Common copy number driver and subclonal events were identified, providing clear evidence of copy number evolution in medulloblastoma development. Moreover, subclonal whole-arm and focal copy number alterations covering important genomic loci (e.g. on chr10 of SHH patients) were detected in single tumour cells, yet undetectable at the bulk-tumor level. Spatial copy number heterogeneity was also common, with differences between clonal and subclonal events detected in distinct regions of individual tumours. Mutational analysis of the cells allowed dissection of spatial and clonal heterogeneity patterns for key medulloblastoma mutations (e.g. CTNNB1, TP53, SMARCA4, PTCH1) within our cohort. Integrated copy number and mutational analysis is underway to establish their inter-relationships and relative contributions to clonal evolution during tumourigenesis. In summary, single-cell analysis has enabled the resolution of common mutational and copy number drivers, alongside sub-clonal events and distinct patterns of clonal and spatial evolution, in medulloblastoma development. We anticipate these findings will provide a critical foundation for future improved biomarker selection, and the development of targeted therapies.


2019 ◽  
Vol 47 (19) ◽  
pp. e122-e122
Author(s):  
Ramya Viswanathan ◽  
Elsie Cheruba ◽  
Lih Feng Cheow

Abstract Genome-wide profiling of copy number alterations and DNA methylation in single cells could enable detailed investigation into the genomic and epigenomic heterogeneity of complex cell populations. However, current methods to do this require complex sample processing and cleanup steps, lack consistency, or are biased in their genomic representation. Here, we describe a novel single-tube enzymatic method, DNA Analysis by Restriction Enzyme (DARE), to perform deterministic whole genome amplification while preserving DNA methylation information. This method was evaluated on low amounts of DNA and single cells, and provides accurate copy number aberration calling and representative DNA methylation measurement across the whole genome. Single-cell DARE is an attractive and scalable approach for concurrent genomic and epigenomic characterization of cells in a heterogeneous population.


Author(s):  
Jack Kuipers ◽  
Mustafa Anıl Tuncel ◽  
Pedro Ferreira ◽  
Katharina Jahn ◽  
Niko Beerenwinkel

Copy number alterations are driving forces of tumour development and the emergence of intra-tumour heterogeneity. A comprehensive picture of these genomic aberrations is therefore essential for the development of personalised and precise cancer diagnostics and therapies. Single-cell sequencing offers the highest resolution for copy number profiling down to the level of individual cells. Recent high-throughput protocols allow for the processing of hundreds of cells through shallow whole-genome DNA sequencing. The resulting low read-depth data poses substantial statistical and computational challenges to the identification of copy number alterations. We developed SCICoNE, a statistical model and MCMC algorithm tailored to single-cell copy number profiling from shallow whole-genome DNA sequencing data. SCICoNE reconstructs the history of copy number events in the tumour and uses these evolutionary relationships to identify the copy number profiles of the individual cells. We show the accuracy of this approach in evaluations on simulated data and demonstrate its practicability in applications to a xenograft breast cancer sample.


2020 ◽  
Author(s):  
Ana Nikolic ◽  
Divya Singhal ◽  
Katrina Ellestad ◽  
Michael Johnston ◽  
Aaron Gillmor ◽  
...  

ABSTRACTThe single-cell assay for transposase accessible chromatin (scATAC) is an invaluable asset to profile the epigenomic landscape of heterogeneous cells populations in complex tissue and organ systems. However, the lack of tools that enable the use of scATAC data to discriminate between malignant and non-malignant cells has prevented the widespread application of this technique to clinical tumor samples. Here we describe Copy-scAT, a new computational tool that uses scATAC data to infer both large-scale and focal copy number alterations. Copy-scAT can call both clonal and subclonal copy number changes, allowing identification of cancer cells and cell populations that putatively constitute the tumor microenvironment. Copy-scAT therefore enables downstream chromatin accessibility studies that focus on malignant or non-malignant cell populations in clinical samples that are profiled by scATAC.


2019 ◽  
Author(s):  
Masoud Zamani Esteki ◽  
Amin Ardeshirdavani ◽  
Daniel Alcaide ◽  
Heleen Masset ◽  
Jia Ding ◽  
...  

Haplotyping is imperative for comprehensive analysis of genomes, imputation of genetic variants and interpretation of error-prone single-cell genomic data. Here we present a novel sequencing-based approach for whole-genome SNP typing of single cells, and determine genome-wide haplotypes, the copy number of those haplotypes as well as the parental and segregational origin of chromosomal aberrations from sequencing- and array-based SNP landscapes of single cells. The analytical workflow is made available as an interactive web application HiVA (https://hiva.esat.kuleuven.be).


2018 ◽  
Author(s):  
S Abujudeh ◽  
SS Zeki ◽  
MCV van Lanschot ◽  
M Pusung ◽  
JMJ Weaver ◽  
...  

AbstractLarge-scale cancer genome studies suggest that tumors are driven by somatic copy number alterations (SCNAs) or single-nucleotide variants (SNVs). Due to the low-cost, the clinical use of genomics assays is biased towards targeted gene panels, which identify SNVs. There is a need for a comparably low-cost and simple assay for high-resolution SCNA profiling. Here we present our method, conliga, which infers SCNA profiles from a low-cost and simple assay.


2019 ◽  
Author(s):  
Simone Zaccaria ◽  
Benjamin J. Raphael

AbstractSingle-cell barcoding technologies have recently been used to perform whole-genome sequencing of thousands of individual cells in parallel. These technologies provide the opportunity to characterize genomic heterogeneity at single-cell resolution, but their extremely low sequencing coverage (<0.05X per cell) has thus far restricted their use to identification of the total copy number of large multi-megabase segments in individual cells. However, total copy numbers do not distinguish between the two homologous chromosomes in humans, and thus provide a limited view of tumor heterogeneity and evolution missing important events such as copy-neutral loss-of-heterozygosity (LOH). We introduce CHISEL, the first method to infer allele- and haplotype-specific copy numbers in single cells and subpopulations of cells by aggregating sparse signal across thousands of individual cells. We applied CHISEL to 10 single-cell sequencing datasets from 2 breast cancer patients, each dataset containing ≈2000 cells. We identified extensive allele-specific copy-number aberrations (CNAs) in these samples including copy-neutral LOH, whole-genome duplications (WGDs), and mirrored-subclonal CNAs in subpopulations of cells. These allele-specific CNAs alter the copy number of genomic regions containing well-known breast cancer genes including TP53, BRCA2, and PTEN but are invisible to total copy number analysis. We utilized CHISEL’s allele- and haplotype-specific copy numbers to derive a more refined reconstruction of tumor evolution: timing allele-specific CNAs before and after WGDs, identifying low-frequency subclones distinguished by unique CNAs, and uncovering evidence of convergent evolution. This reconstruction is supported by orthogonal analysis of somatic single-nucleotide variants (SNVs) obtained by pooling barcoded reads across clones defined by CHISEL.


Sign in / Sign up

Export Citation Format

Share Document