Composite Single Cell Genetics and Clonal Phylogeny in Acute Lymphoblastic Leukaemia

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 122-122
Author(s):  
Nicola E Potter ◽  
Luca Ermini ◽  
Elli Papaemmanuil ◽  
Gowri Vijayaraghavan ◽  
Ian Titley ◽  
...  

Abstract Abstract 122 Cancer clone development is widely regarded as an evolutionary or Darwinian process of genetic diversification and natural (or therapeutic) selection within tissue ecosystems. Emerging studies are providing strong evidence that dynamic and complex branching sub-clonal genetic architectures are a common feature of cancer (Greaves M and Maley CC Nature 2012). This complexity may underpin the intransigence of advanced cancer to therapeutic control, particularly as the critical 'driver' cells – cancer or leukaemic stem cells, also appear to be genetically diverse within individual patients (Anderson K et al Nature 2011, Notta F et al Nature 2011). Sub-clonal architecture can only be fully determined through the study of large numbers of single cells uniformly sampled from the individual cancer of interest and assessed for composite genotype. Various technologies and approaches from fluorescent in situ hybridisation (FISH) to whole-genome sequencing of single cells have been applied to cancer and leukaemic cells but each approach has limitations. We have developed a novel multiplex microfluidic Q-PCR approach that allows unbiased single cell sampling, high throughput analysis of hundreds of individual cells and simultaneous detection of multiple genetic alterations in a single cell, including fusion genes, DNA copy number alterations (CNAs) and sequence-based mutations. As a proof of principle study we have applied this technique to REH, an acute lymphoblastic leukaemia (ALL) cell line that harbors the ETV6-RUNX1 fusion and a SNP in the EPO receptor gene, which we used as a surrogate mutation. We further determined a detailed sub-clonal genetic architecture for two ETV6-RUNX1 positive ALL patient samples with multiple point mutations and copy number alterations (determined by whole-genome sequencing) by interrogating approximately 400 flow cytometry sorted single cells with validation by FISH and standard sequencing. Briefly, single cells were lysed prior to multiplex specific (DNA) target amplification (STA) and Q-PCR using the 96.96 dynamic microfluidic array and the BioMarkï HD (Fluidigm, UK). Phylogenetic trees were constructed using maximum parsimony with PAUP analysis software. Interrogation of REH revealed that all single cells registered the ETV6-RUNX1 fusion and EPO receptor SNP, but 42% of cells gained either 1 or 2 additional copies of chromosome 21. Patient sample data revealed branching sub-clonal architectures in Case A in which all leukaemic cells harbored the fusion with additional point mutations but only sub-clones showed CNAs. In contrast, the sub-clonal architecture of Case B showed that whilst the ETV6-RUNX1 fusion was the earliest (or universal) genomic event, CNAs were relatively early events preceding the acquisition of point mutations (Figure 1). In both cases, the numerically predominant sub-clone harbored both point mutations and CNAs in addition to the presumptive initiating lesion, ETV6-RUNX1. These detailed and complex sub-clonal architectures would be masked by other genetic techniques. Single cell genetics coupled with deep genome sequencing is now technically feasible and provides an accurate portrait of the dynamic clonal complexity in leukaemia (and other cancers). Variegated genetics and clonal complexity in individual leukaemias has important implications for our understanding of molecular pathogenesis and for therapeutic targeting. Figure 1. This sub-clonal genetic architecture depicts the branching structure found for Case B, illustrating that in this case the ETV6-RUNX1 fusion was the earliest genomic event, followed by CNAs and the acquisition of point mutations. Those populations highlighted grey are within the experimental error rate but potentially true populations. Figure 1. This sub-clonal genetic architecture depicts the branching structure found for Case B, illustrating that in this case the ETV6-RUNX1 fusion was the earliest genomic event, followed by CNAs and the acquisition of point mutations. Those populations highlighted grey are within the experimental error rate but potentially true populations. Disclosures: No relevant conflicts of interest to declare.

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii408-iii408
Author(s):  
Marina Danilenko ◽  
Masood Zaka ◽  
Claire Keeling ◽  
Stephen Crosier ◽  
Rafiqul Hussain ◽  
...  

Abstract Medulloblastomas harbor clinically-significant intra-tumoral heterogeneity for key biomarkers (e.g. MYC/MYCN, β-catenin). Recent studies have characterized transcriptional heterogeneity at the single-cell level, however the underlying genomic copy number and mutational architecture remains to be resolved. We therefore sought to establish the intra-tumoural genomic heterogeneity of medulloblastoma at single-cell resolution. Copy number patterns were dissected by whole-genome sequencing in 1024 single cells isolated from multiple distinct tumour regions within 16 snap-frozen medulloblastomas, representing the major molecular subgroups (WNT, SHH, Group3, Group4) and genotypes (i.e. MYC amplification, TP53 mutation). Common copy number driver and subclonal events were identified, providing clear evidence of copy number evolution in medulloblastoma development. Moreover, subclonal whole-arm and focal copy number alterations covering important genomic loci (e.g. on chr10 of SHH patients) were detected in single tumour cells, yet undetectable at the bulk-tumor level. Spatial copy number heterogeneity was also common, with differences between clonal and subclonal events detected in distinct regions of individual tumours. Mutational analysis of the cells allowed dissection of spatial and clonal heterogeneity patterns for key medulloblastoma mutations (e.g. CTNNB1, TP53, SMARCA4, PTCH1) within our cohort. Integrated copy number and mutational analysis is underway to establish their inter-relationships and relative contributions to clonal evolution during tumourigenesis. In summary, single-cell analysis has enabled the resolution of common mutational and copy number drivers, alongside sub-clonal events and distinct patterns of clonal and spatial evolution, in medulloblastoma development. We anticipate these findings will provide a critical foundation for future improved biomarker selection, and the development of targeted therapies.


2021 ◽  
Author(s):  
Lu Liu ◽  
He Chen ◽  
Cheng Sun ◽  
Jianyun Zhang ◽  
Juncheng Wang ◽  
...  

Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence rates and the structural variations' stochastic natures. Using a Tn5-transposase assisted single-cell whole genome sequencing method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thousand single cells per individual, we found that about 7.5% of the cells had large-size copy number alterations. Trisomy 21 was the most prevalent aneuploid event among all autosomal copy number alterations, while monosomy X occurred most frequently in over-30-year-old females. In the monosomy X single cells from individuals with phased genomes and identified X- inactivation ratios in bulk, the inactive X Chromosomes were lost more often than were the active ones.


2019 ◽  
Author(s):  
Xiao Dong ◽  
Lei Zhang ◽  
Xiaoxiao Hao ◽  
Tao Wang ◽  
Jan Vijg

AbstractBackgroundIdentification of de novo mutations from cell populations requires single-cell whole-genome sequencing (SCWGS). Although many experimental protocols of SCWGS have been developed, few computational tools are available for downstream analysis of different types of somatic mutations, including copy number variation (CNV).ResultsWe developed SCCNV, a software tool for detecting CNVs from whole genome-amplified single cells. SCCNV is a read-depth based approach with adjustment for the whole-genome amplification bias.ConclusionsWe demonstrate its performance by analyzing data collected from most of the single-cell amplification methods, including DOP-PCR, MDA, MALBAC and LIANTI. SCCNV is freely available at https://github.com/biosinodx/SCCNV.


2021 ◽  
Author(s):  
Lu Liu ◽  
He Chen ◽  
Cheng Sun ◽  
Jianyun Zhang ◽  
Juncheng Wang ◽  
...  

Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence rates and the structural variations’ stochastic natures. Using a Tn5-transposase-assisted single-cell whole-genome sequencing method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thousand single cells per individual, we found that about 7.5% of the cells had large-size copy number alterations. Trisomy 21 was the most prevalent aneuploid event among all autosomal copy number alterations, whereas monosomy X occurred most frequently in over-30-yr-old females. In the monosomy X single cells from individuals with phased genomes and identified X-inactivation ratios in bulk, the inactive X Chromosomes were lost more often than the active ones.


2021 ◽  
Author(s):  
Sandra Hui ◽  
Rasmus Nielsen

Copy number alterations are a significant driver in cancer growth and development, but remain poorly characterized on the single cell level. Although genome evolution in cancer cells is Markovian through evolutionary time, copy number alterations are not Markovian along the genome. However, existing methods call copy number profiles with Hidden Markov Models or change point detection algorithms based on changes in observed read depth, corrected by genome content, and do not account for the stochastic evolutionary process. We present a theoretical framework to use tumor evolutionary history to accurately call copy number alterations in a principled manner. In order to model the tumor evolutionary process and account for technical noise from low coverage single cell whole genome sequencing data, we developed SCONCE, a method based on a Hidden Markov Model to analyze read depth data from tumor cells using matched normal cells as negative controls. Using a combination of public datasets and simulations, we show SCONCE accurately decodes copy number profiles, with broader implications for understanding tumor evolution.


2019 ◽  
Vol 47 (19) ◽  
pp. e122-e122
Author(s):  
Ramya Viswanathan ◽  
Elsie Cheruba ◽  
Lih Feng Cheow

Abstract Genome-wide profiling of copy number alterations and DNA methylation in single cells could enable detailed investigation into the genomic and epigenomic heterogeneity of complex cell populations. However, current methods to do this require complex sample processing and cleanup steps, lack consistency, or are biased in their genomic representation. Here, we describe a novel single-tube enzymatic method, DNA Analysis by Restriction Enzyme (DARE), to perform deterministic whole genome amplification while preserving DNA methylation information. This method was evaluated on low amounts of DNA and single cells, and provides accurate copy number aberration calling and representative DNA methylation measurement across the whole genome. Single-cell DARE is an attractive and scalable approach for concurrent genomic and epigenomic characterization of cells in a heterogeneous population.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4254-4254
Author(s):  
Zachary Hunter ◽  
Lian Xu ◽  
Guang Yang ◽  
Xia Liu ◽  
Yang Cao ◽  
...  

Abstract Background Over 90% of patients with Waldenström's Macroglobulinemia (WM), and 50-80% of patients with the precursor condition, IgM MGUS, express MYD88 L265P. These findings suggest that other mutations may support progression of IgM MGUS to WM. Chromosomal aberrations including large losses in 6q are commonly present in WM patients, though the gene loss accounting for WM pathogenesis remains unclear. We therefore sought to delineate copy number alterations (CNA) and structural variants using whole genome sequencing (WGS) in order to more clearly define other important gene alterations in WM. Methods DNA from CD19+ bone marrow lymphoplasmacytic lymphoma cells (LPC) and CD19-depleted peripheral blood mononuclear cells from 10 WM patients was used for paired tumor/germline analysis by WGS. Coverage in the tumor sample was divided by the coverage in the paired germline sample for each matching position, resulting in coverage ratios for each 100Kb window. Statistically significant windows within each genome were then analyzed across the cohort by randomizing the coverage positions to assess the probability of observing the given frequency of a CNA by random chance. TaqMan quantitative polymerase chain reaction (PCR) copy number assays was used to validate findings. Translocations were validated by Sanger sequencing across the breakpoint including flanking sequences. Results Functional annotation for identified CNAs was undertaken using Ingenuity Pathway Analysis that revealed a significant enrichment for pathways dysregulated in B-cell malignancies (Table 1). Iteratively randomizing the genomic position of CNAs not related to the chromosome 6 deletions revealed a greater than 3 fold increase in the targeting of COSMIC genes than expected by chance (p< 0.001). Affected genes in the COSMIC census were BTG1 (9/10; 90%), FOXP1 (7/10; 70%), FNBP1 (7/10; 70%), CD74 (7/10; 70%), TOP1 (6/10; 60%), MYB (5/10; 50%), CBLB (5/10; 50%), ETV6 (5/10; 50%), TNFAIP3 (5/10; 50%), FBXW7 (5/10; 50%), PRDM1 (5/10; 50%), TFE3 (4/10; 40%), JAK1 (4/10; 40%), MAML2 (4/10; 40%), FAM46C (4/10; 40%), EBF1 (4/10; 40%), STL (4/10; 40%), and BIRC3 (4/10; 40%). Other affected genes of interested included PRDM2 (8/10; 80%), HIVEP2 (8/10; 80%), ARID1B (7/10; 70%) as well as LYN (7/10; 70%). There were no singular regions of statistical significance in 6q to denote a minimally deleted region though neither of the previously suspected target genes for 6q loss, PRDM1 and TNFAIP3, were included in the regions of highest statistical significance. Losses in HIVEP2 (8/10; 80%) as well as ARID1B (7/10; 70%) and BCLAF1 (7/10; 70%) constituted the most common deletions in chromosome 6, and were present in patients with and without the large-scale losses in 6q. While no recurrent translocations were noted in this study, 2 or the 5 (40%) of the 6q deletions corresponded with translocation events. In one case, this was a result of chromothripsis focused on 6q while in the other case, a t(6;X) translocation linked to the amplification of Xq was identified. Validation studies confirmed presence of somatic deletions in BTG1 (4/5; 80%) at Chr. 12q21.33, HIVEP2 (4/5; 80%) at 6q24.2, LYN (3/5 60%) at 8q12.1, PLEKHG1 (3/5; 60%) at 6q25.1, ARID1B (3/5 60%) at 6q25.1, PDRM2 (2/5; 40%) at 1p36.21, FOXP1 (2/5; 40%) at 3p13, and MKLN1 (2/5 40%) at 7q32. As some CVAs were subclonal, we validated the correlation between the PCR relative copy number and WGS coverage predictions (rho = .926; p =2.2x10-16). Conclusions Highly recurrent CNAs are present in WM LPCs that include genes with critical regulatory roles in lymphocytic growth and survival signaling. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document