scholarly journals Video: New bending modes of an acoustically levitated droplet in resonance

Author(s):  
Zilong Fang ◽  
Mohammad Taslim ◽  
Kai-tak Wan
Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2022
Author(s):  
Benjamin Spetzler ◽  
Elizaveta V. Golubeva ◽  
Ron-Marco Friedrich ◽  
Sebastian Zabel ◽  
Christine Kirchhof ◽  
...  

Magnetoelectric resonators have been studied for the detection of small amplitude and low frequency magnetic fields via the delta-E effect, mainly in fundamental bending or bulk resonance modes. Here, we present an experimental and theoretical investigation of magnetoelectric thin-film cantilevers that can be operated in bending modes (BMs) and torsion modes (TMs) as a magnetic field sensor. A magnetoelastic macrospin model is combined with an electromechanical finite element model and a general description of the delta-E effect of all stiffness tensor components Cij is derived. Simulations confirm quantitatively that the delta-E effect of the C66 component has the promising potential of significantly increasing the magnetic sensitivity and the maximum normalized frequency change ∆fr. However, the electrical excitation of TMs remains challenging and is found to significantly diminish the gain in sensitivity. Experiments reveal the dependency of the sensitivity and ∆fr of TMs on the mode number, which differs fundamentally from BMs and is well explained by our model. Because the contribution of C11 to the TMs increases with the mode number, the first-order TM yields the highest magnetic sensitivity. Overall, general insights are gained for the design of high-sensitivity delta-E effect sensors, as well as for frequency tunable devices based on the delta-E effect.


Author(s):  
Jaeho Jung ◽  
Hyungmin Jun ◽  
Phill-Seung Lee

AbstractThis paper introduces a new concept called self-updated finite element (SUFE). The finite element (FE) is activated through an iterative procedure to improve the solution accuracy without mesh refinement. A mode-based finite element formulation is devised for a four-node finite element and the assumed modal strain is employed for bending modes. A search procedure for optimal bending directions is implemented through deep learning for a given element deformation to minimize shear locking. The proposed element is called a self-updated four-node finite element, for which an iterative solution procedure is developed. The element passes the patch and zero-energy mode tests. As the number of iterations increases, the finite element solutions become more and more accurate, resulting in significantly accurate solutions with a few iterations. The SUFE concept is very effective, especially when the meshes are coarse and severely distorted. Its excellent performance is demonstrated through various numerical examples.


1973 ◽  
Vol 27 (1) ◽  
pp. 22-26 ◽  
Author(s):  
S. M. Craven ◽  
F. F. Bentley ◽  
D. F. Pensenstadler

The low frequency infrared spectra from 450 to 75 cm−1 of seven oximes and five aldoximes have been recorded for pure samples and for dilute solutions in cyclohexane. An intense characteristic band is present in the solution spectra at 367 ± 10 cm−1. This characteristic band shifts to 275 ± 10 cm−1 in the spectra of the OD compounds. The 367 ± 10 cm−1 and 275 ± 10 cm−1 bands are assigned to OH and OD torsional vibrations. A comparison of the solution spectra with spectra of the solid samples indicated that the OH … N hydrogen bond stretch of oximes and aldoximes occurs in 300 to 200 cm−1 region. Strong bands also are present in 140 to 100 cm−1 region which are due to OH … N bending modes or perhaps lattice vibrations.


1972 ◽  
Vol 39 (3) ◽  
pp. 779-785 ◽  
Author(s):  
A. I. Soler

Equations of motion are derived for coupled extension, flexure, and torsion of pretwisted curved bars of thin-walled, open section. The derivation is based on energy principles and includes inertia terms. The major effect of initial pretwist is to allow coupling of all possible beam deformation modes; however, if the bar is straight and has two axes of symmetry, pretwist causes coupling only between the two bending modes, and between extension and torsion. The governing equations are presented in first-order form, and a numerical technique is suggested for the case of space varying pretwist. It is suggested that these equations may form the basis for a simplified study of the effect of superelevation on the static and dynamic response of curved highway bridges. Finally, a simple straight beam with uniform pretwist is studied to compare effects of pretwist and restrained torsion in a thin-walled beam of open section.


MRS Advances ◽  
2016 ◽  
Vol 1 (63-64) ◽  
pp. 4227-4232 ◽  
Author(s):  
S.V. Stefanovsky ◽  
O.I. Stefanovsky ◽  
M.I Kadyko ◽  
V.A. Zhachkin ◽  
L.D. Bogomolova

ABSTRACTGlasses of the series (mol.%) 40 Na2O, (20-x) Al2O3, x Fe2O3, 40 P2O5 were irradiated with 8 MeV electrons to doses equivalent of 0.1, 0.5, and 1.0 MGy and characterized by FTIR spectroscopy and ESR at room temperature. FTIR spectra of all the glasses consist of strong bands due to O-P-O stretching modes in (PO4)3- and (P2O7)4- units at 1000-1200 cm-1, P-O-P stretching modes at 900-950 cm-1 (νas) and 700-750 cm-1 (νs), and bending modes in the PO4 units. The wavenumber range lower 800 cm-1 has some contribution due to stretching modes in MO4 and MO6 (M = Al, Fe) units. Moreover the bands at 3300-3700 cm-1 and 1550-1650 cm-1 due to stretching and bending modes in both absorbed and structurally bound H2O molecules were present. As irradiation dose increases the bands due to stretching and bending modes in water molecules and M-O-H bonds become stronger and are split. No essential changes with increasing dose were observed within the spectral range of stretching modes of the O-P-O and P-O-P bonds. Irradiation yields phosphorus-oxygen hole centers - PO42- (D5) and PO42- (D6), and PO32- ion-radicals (D2) observable in ESR spectra of low-Fe glasses. At x>5 their responses are overlapped with strong broad line due to Fe(III). On the whole, with the increase in iron content the glass structural evolution decrease.


Author(s):  
R. Kashani ◽  
S. Melkote ◽  
A. Sorgenfrei

Abstract Active vibration control of helicopter rotor blade is studied. For the purpose of illustration, we have considered only flap wise vibration of a hingeless rotor blade, and modelled it, using finite element method, by 20 beam elements. The first 12 bending modes of the system are considered in the model. A H∞ controller is designed for the plant formulated as above. The result of the numerical simulation of the closed-loop system shows that the control introduces an appreciable amount of damping in the frequency region of interest. The consideration of the modelling uncertainty in the synthesis of the controller resulted in a design which is robust stable in presence of formulated model uncertainty.


Author(s):  
Florence Nyssen ◽  
Alain Batailly

Abstract In this work, the impact of small mistuning on rotor/stator contact interactions is investigated. First, a detailed study of a rotor/stator interaction between the first bending modes and the second engine order is presented in the tuned case. Then, a numerical investigation on the effect of mistuning on the studied rotor/stator contact interaction is carried out. In particular, a stochastic analysis is performed to evaluate the robustness of the interaction with respect to the mistuning level. Simulations are conducted using a reduced order model (ROM) of an industrial bladed disk that combines both physical degrees of freedom (along blades tip for contact treatment) and modal coordinates. Mistuning is introduced in the tuned ROM by means of a modified version of the component mode mistuning method that allows to keep physical degrees of freedom within the reduced basis. Nonlinear amplification factors, i.e. the amplification factors in the context of contact nonlinearities, are compared with their linear counterparts, the latter are computed using a linear forcing on each blade using a two nodal diameters traveling wave excitation on the mistuned and the tuned bladed disk. The comparison between the linear and nonlinear amplification factor for each sample highlights that no correlation exists between a mistuning pattern leading to high amplifications in a linear context or when contact nonlinearities are taken into account. Therefore, dedicated analyses on the effect of mistuning should be undertaken with contact nonlinearities considerations at the design stage especially if intentional mistuning is considered.


Author(s):  
Jessica A. Tang ◽  
Justin K. Scheer ◽  
Christopher P. Ames ◽  
Jenni M. Buckley

For spine biomechanical tests, the cable-driven system in particular has been widely used to apply pure bending moments. The advantages to pure moment testing lie in its consistency as an accepted standard protocol across previous literature and its ability to ensure uniform loading across all levels of the spinal column. Of the methods used for pure moment testing, cable-driven set-ups are popular due to their low requirements and simple design. Crawford et al [1] were the first to employ this method, but prior work by our group indicated a discrepancy between applied and intended moment for this system in flexion-extension only [2]. We hypothesize that this discrepancy can be observed in other bending modes and minimized with a second-generation floating ring design to eliminate off-axis loads.


Sign in / Sign up

Export Citation Format

Share Document