Statistical Geometry and Fundamental Particles

1947 ◽  
Vol 72 (4) ◽  
pp. 298-303 ◽  
Author(s):  
Nathan Rosen
1947 ◽  
Vol 72 (12) ◽  
pp. 1253-1253 ◽  
Author(s):  
Nathan Rosen

1980 ◽  
Vol 41 (C8) ◽  
pp. C8-284-C8-288 ◽  
Author(s):  
V. A. Poluchin ◽  
M. M. Dzugutov ◽  
V. F. Uchov ◽  
R. A. Vatolin

Author(s):  
Gerald Vision

Unlike brute ‘entities’, if conscious states (c-states) are brute, it will be a consequence of their primitive—viz., not admitting further elaboration—connection to their material base, what is commonly known as emergence. One might suppose the chief challenge to emergence comes from various materialist counter-proposals. However, given the distinctive character of c-states, a class of critics describe even materialist reductions as objectionable forms of emergentism. Instead, their fallback position is a reinvigorated panpsychism: consciousness is the intrinsic nature of the most fundamental particles. In this chapter the author examines that form of panpsychism, tracing its roots to a version of the Principle of Sufficient Reason and to suggestions aired in Bertrand Russell’s struggles with the issue. He concludes that this panpsychism fails, leaving the field to materialism and emergentist dualism.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Upalaparna Banerjee ◽  
Joydeep Chakrabortty ◽  
Suraj Prakash ◽  
Shakeel Ur Rahaman

AbstractThe dynamics of the subatomic fundamental particles, represented by quantum fields, and their interactions are determined uniquely by the assigned transformation properties, i.e., the quantum numbers associated with the underlying symmetry of the model under consideration. These fields constitute a finite number of group invariant operators which are assembled to build a polynomial, known as the Lagrangian of that particular model. The order of the polynomial is determined by the mass dimension. In this paper, we have introduced an automated $${\texttt {Mathematica}}^{\tiny \textregistered }$$ Mathematica ® package, GrIP, that computes the complete set of operators that form a basis at each such order for a model containing any number of fields transforming under connected compact groups. The spacetime symmetry is restricted to the Lorentz group. The first part of the paper is dedicated to formulating the algorithm of GrIP. In this context, the detailed and explicit construction of the characters of different representations corresponding to connected compact groups and respective Haar measures have been discussed in terms of the coordinates of their respective maximal torus. In the second part, we have documented the user manual of GrIP that captures the generic features of the main program and guides to prepare the input file. We have attached a sub-program CHaar to compute characters and Haar measures for $$SU(N), SO(2N), SO(2N+1), Sp(2N)$$ S U ( N ) , S O ( 2 N ) , S O ( 2 N + 1 ) , S p ( 2 N ) . This program works very efficiently to find out the higher mass (non-supersymmetric) and canonical (supersymmetric) dimensional operators relevant to the effective field theory (EFT). We have demonstrated the working principles with two examples: the standard model (SM) and the minimal supersymmetric standard model (MSSM). We have further highlighted important features of GrIP, e.g., identification of effective operators leading to specific rare processes linked with the violation of baryon and lepton numbers, using several beyond standard model (BSM) scenarios. We have also tabulated a complete set of dimension-6 operators for each such model. Some of the operators possess rich flavour structures which are discussed in detail. This work paves the way towards BSM-EFT.


1999 ◽  
Vol 158-160 ◽  
pp. 549-556 ◽  
Author(s):  
Pablo G. Debenedetti ◽  
Thomas M. Truskett
Keyword(s):  

Author(s):  
Tiantian Yang ◽  
Haipeng Qiu ◽  
Xiaodong Liu ◽  
Ling Wang ◽  
Weijie Xie ◽  
...  

2021 ◽  
Vol 34 (2) ◽  
pp. 236-247
Author(s):  
Huawang Li

In this paper, we conjecture that gravitation, electromagnetism, and strong nuclear interactions are all produced by particle collisions by determining the essential concept of force in physics (that is, the magnitude of change in momentum per unit time for a group of particles traveling in one direction), and further speculate the existence of a new particle, Yizi. The average kinetic energy of Yizi is considered to be equal to Planck’s constant, so the mass of Yizi is calculated to be <mml:math display="inline"> <mml:mrow> <mml:mn>7.37</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>51</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> kg and the average velocity of Yizi is <mml:math display="inline"> <mml:mrow> <mml:mn>4.24</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mn>8</mml:mn> </mml:msup> </mml:mrow> </mml:math> m/s. The universe is filled with Yizi gas, the number density of Yizi can reach <mml:math display="inline"> <mml:mrow> <mml:mn>1.61</mml:mn> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mn>10</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>64</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> /m3, and Yizi has no charge. After abandoning the idealism of physics, I try to construct a physical framework from three elementary particles: Protons, electrons, and Yizis. (The elementary particles mentioned here generally refer to the indivisible particles that constitute objects.) The effects of Yizi on the conversion of light, electricity, magnetism, mass, and energy as well as the strong nuclear and electromagnetic forces are emphasized. The gravitation of electromagnetic waves is measured using a Cavendish torsion balance. It is shown experimentally that electromagnetic waves not only produce pressure (repulsion) but also gravitational forces upon objects. The universe is a combination of three fundamental particles. Motion is eternal and follows the laws of conservation of energy and momentum. There is only one force: The magnitude of change in momentum per unit time for a group of particles traveling in one direction. Furthermore, this corresponds to the magnitude of the force that the group of particles exerts in that direction. From this perspective, all physical phenomena are relatively easy to explain.


Sign in / Sign up

Export Citation Format

Share Document