scholarly journals Stochastic Hopf bifurcations in vacuum optical tweezers

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Stephen H. Simpson ◽  
Yoshihiko Arita ◽  
Kishan Dholakia ◽  
Pavel Zemánek
2004 ◽  
Vol 51 (3) ◽  
pp. 409-414 ◽  
Author(s):  
P. Jordan ◽  
J. Leach ◽  
M. J. Padgett ◽  
J. Cooper ◽  
G. Sinclair
Keyword(s):  

Author(s):  
Sandip Tiwari

This chapter explores electromagnetic-matter interactions from photon to extinction length scales, i.e., nanometer of X-ray and above. Starting with Casimir-Polder effect to understand interactions of metals and dielectrics at near-atomic distance scale, it stretches to larger wavelengths to explore optomechanics and its ability for energy exchange and signal transduction between PHz and GHz. This range is explored with near-quantum sensitivity limits. The chapter also develops the understanding phononic bandgaps, and for photons, it explores the use of energetic coupling for useful devices such as optical tweezers, confocal microscopes and atomic clocks. It also explores miniature accelerators as a frontier area in accelerator physics. Plasmonics—the electromagnetic interaction with electron charge cloud—is explored for propagating and confined conditions together with the approaches’ possible uses. Optoelectronic energy conversion is analyzed in organic and inorganic systems, with their underlying interaction physics through solar cells and its thermodynamic limit, and quantum cascade lasers.


2021 ◽  
Vol 2 (1) ◽  
pp. 100283
Author(s):  
Pedro Pompeu ◽  
Pedro S. Lourenço ◽  
Diney S. Ether ◽  
Juliana Soares ◽  
Jefte Farias ◽  
...  

ACS Photonics ◽  
2021 ◽  
Author(s):  
Lachlan W. Russell ◽  
Eloise C. Dossetor ◽  
Alexander A. Wood ◽  
David A. Simpson ◽  
Peter J. Reece

ChemPhysChem ◽  
2021 ◽  
Vol 22 (14) ◽  
pp. 1408-1408
Author(s):  
Joshua D. Kolbow ◽  
Nathan C. Lindquist ◽  
Christopher T. Ertsgaard ◽  
Daehan Yoo ◽  
Sang‐Hyun Oh

2021 ◽  
Vol 53 (8) ◽  
Author(s):  
Quy Ho Quang ◽  
Thanh Thai Doan ◽  
Kien Bui Xuan ◽  
Thang Nguyen Manh

2021 ◽  
Vol 50 (2) ◽  
pp. 223-237 ◽  
Author(s):  
Hannes Witt ◽  
Filip Savić ◽  
Sarah Verbeek ◽  
Jörn Dietz ◽  
Gesa Tarantola ◽  
...  

AbstractMembrane-coated colloidal probes combine the benefits of solid-supported membranes with a more complex three-dimensional geometry. This combination makes them a powerful model system that enables the visualization of dynamic biological processes with high throughput and minimal reliance on fluorescent labels. Here, we want to review recent applications of colloidal probes for the study of membrane fusion. After discussing the advantages and disadvantages of some classical vesicle-based fusion assays, we introduce an assay using optical detection of fusion between membrane-coated glass microspheres in a quasi two-dimensional assembly. Then, we discuss free energy considerations of membrane fusion between supported bilayers, and show how colloidal probes can be combined with atomic force microscopy or optical tweezers to access the fusion process with even greater detail.


2009 ◽  
Vol 19 (06) ◽  
pp. 1931-1949 ◽  
Author(s):  
QIGUI YANG ◽  
KANGMING ZHANG ◽  
GUANRONG CHEN

In this paper, a modified generalized Lorenz-type system is introduced, which is state-equivalent to a simple and special form, and is parameterized by two parameters useful for chaos turning and system classification. More importantly, based on the parameterized form, two classes of new chaotic attractors are found for the first time in the literature, which are similar but nonequivalent in topological structure. To further understand the complex dynamics of the new system, some basic properties such as Lyapunov exponents, Hopf bifurcations and compound structure of the attractors are analyzed and demonstrated with careful numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document