Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering

2001 ◽  
Vol 64 (3) ◽  
Author(s):  
Vladan Vuletić ◽  
Hilton W. Chan ◽  
Adam T. Black
2019 ◽  
Vol 631 ◽  
pp. A33 ◽  
Author(s):  
Johan P. Bjørgen ◽  
Jorrit Leenaarts ◽  
Matthias Rempel ◽  
Mark C. M. Cheung ◽  
Sanja Danilovic ◽  
...  

Context. Because of the complex physics that governs the formation of chromospheric lines, interpretation of solar chromospheric observations is difficult. The origin and characteristics of many chromospheric features are, because of this, unresolved. Aims. We focus on studying two prominent features: long fibrils and flare ribbons. To model these features, we use a 3D magnetohydrodynamic simulation of an active region, which self-consistently reproduces both of these features. Methods. We modeled the Hα, Mg II k, Ca II K, and Ca II 8542 Å lines using the 3D non-LTE radiative transfer code Multi3D. To obtain non-LTE electron densities, we solved the statistical equilibrium equations for hydrogen simultaneously with the charge conservation equation. We treated the Ca II K and Mg II k lines with partially coherent scattering. Results. This simulation reproduces long fibrils that span between the opposite-polarity sunspots and go up to 4 Mm in height. They can be traced in all lines owing to density corrugation. In contrast to previous studies, Hα, Mg II h&k, and Ca II H&K are formed at similar height in this model. Although some of the high fibrils are also visible in the Ca II 8542 Å line, this line tends to sample loops and shocks lower in the chromosphere. Magnetic field lines are aligned with the Hα fibrils, but the latter holds to a lesser extent for the Ca II 8542 Å line. The simulation shows structures in the Hα line core that look like flare ribbons. The emission in the ribbons is caused by a dense chromosphere and a transition region at high column mass. The ribbons are visible in all chromospheric lines, but least prominent in Ca II 8542 Å line. In some pixels, broad asymmetric profiles with a single emission peak are produced similar to the profiles observed in flare ribbons. They are caused by a deep onset of the chromospheric temperature rise and large velocity gradients. Conclusions. The simulation produces long fibrils similar to what is seen in observations. It also produces structures similar to flare ribbons despite the lack of nonthermal electrons in the simulation. The latter suggests that thermal conduction might be a significant agent in transporting flare energy to the chromosphere in addition to nonthermal electrons.


Three-dimensional neutron structure factors have been measured on single crystals grown from the melt and from solution. The Bragg reflexions divide into three groups, strong, medium and weak: the strong and medium reflexions are affected by extinction, which is particularly severe for solution-grown crystals, and the weak reflexions by double Bragg scattering. Least-squares analysis of experimental data corrected for these systematic errors confirms that the oxides have the fluorite structure at room temperature and gives precise values for the Debye-Waller factors of the heavy-metal and oxygen atoms and for the ratios of their nuclear coherent scattering amplitudes.


2002 ◽  
Vol 35 (4) ◽  
pp. 497-504 ◽  
Author(s):  
Javier Roberto Santisteban ◽  
A. Steuwer ◽  
L. Edwards ◽  
P. J. Withers ◽  
M. E. Fitzpatrick

Stress measurement by neutron diffraction depends critically on knowledge of the unstressed lattice parameter (a0) of the specimen under study. As a result, measurement of stress profiles in components wherea0is not homogeneous throughout the sample, such as welds or carburized surfaces, can be particularly difficult. An efficient solution to this problem is proposed based on the pulsed neutron transmission diffraction technique. This technique exploits the sharp steps in intensity, the so-called Bragg edges, appearing in the transmitted neutron spectra of polycrystalline materials, such steps being produced by coherent scattering from lattice planes. The position of these Bragg edges as defined by the time-of-flight technique is used to determine precisely local interplanar distances. In this work it is shown that the unstressed lattice parameter of thin specimens subjected to plane stress fields can be defined by recording transmission spectra at different sample inclinations, in complete analogy with the sin2ψ technique used in X-ray diffraction. Moreover, by using an array of detectors it is possible to produce a radiographic `image' ofa0for plane specimens or thin sections out of three-dimensional ones. The capability of the technique is exemplified by mapping the changes ina0for a ferritic weld that was used as a round robin sample in an international program for standardization of stress measurements by neutron diffraction.


Author(s):  
Ainsley E Seago ◽  
Parrish Brady ◽  
Jean-Pol Vigneron ◽  
Tom D Schultz

Members of the order Coleoptera are sometimes referred to as ‘living jewels’, in allusion to the strikingly diverse array of iridescence mechanisms and optical effects that have arisen in beetles. A number of novel and sophisticated reflectance mechanisms have been discovered in recent years, including three-dimensional photonic crystals and quasi-ordered coherent scattering arrays. However, the literature on beetle structural coloration is often redundant and lacks synthesis, with little interchange between the entomological and optical research communities. Here, an overview is provided for all iridescence mechanisms observed in Coleoptera. Types of iridescence are illustrated and classified into three mechanistic groups: multilayer reflectors, three-dimensional photonic crystals and diffraction gratings. Taxonomic and phylogenetic distributions are provided, along with discussion of the putative functions and evolutionary pathways by which iridescence has repeatedly arisen in beetles.


2020 ◽  
Author(s):  
Vasily Stolyarov ◽  
Valeria Sheina ◽  
Dmitrii Khokhlov ◽  
Sergio Vlaic ◽  
Stéphane Pons ◽  
...  

Abstract Inelastic interactions of quantum systems with environment usually wash coherent effects out. In the case of Friedel oscillations, the presence of disorder leads to a fast decay of the oscillation amplitude. Here we show both experimentally and theoretically that in the three-dimensional topological insulator Bi2Te3 the finite lifetime of the Dirac electrons due to disorder causes a splitting of coherent scattering vectors which follows a peculiar evolution in energy. Not only this splitting enables evaluating the lifetime of Dirac quasiparticles in topological insulators, but this general phenomenon can be in play in other quantum systems, leading to non-trivial modifications of their coherent properties.


2021 ◽  
Vol 11 (21) ◽  
pp. 10474
Author(s):  
Jakub Dobosz ◽  
Mateusz Bocheński ◽  
Mariusz Semczuk

In ultracold-atom and ion experiments, flexible control of the direction and amplitude of a uniform magnetic field is necessary. It is achieved almost exclusively by controlling the current flowing through coils surrounding the experimental chamber. Here, we present the design and characterization of a modular, analog electronic circuit that enables three-dimensional control of a magnetic field via the amplitude and direction of a current flowing through three perpendicular pairs of coils. Each pair is controlled by one module, and we are able to continuously change the current flowing thorough the coils in the ±4 A range using analog waveforms such that smooth crossing through zero as the current’s direction changes is possible. With the electrical current stability at the 10−5 level, the designed circuit enables state-of-the-art ultracold experiments. As a benchmark, we use the circuit to compensate stray magnetic fields that hinder efficient sub-Doppler cooling of alkali atoms in gray molasses. We demonstrate how such compensation can be achieved without actually measuring the stray fields present, thus speeding up the process of optimization of various laser cooling stages.


2019 ◽  
Vol 99 (4) ◽  
Author(s):  
V. M. Porozova ◽  
L. V. Gerasimov ◽  
I. B. Bobrov ◽  
S. S. Straupe ◽  
S. P. Kulik ◽  
...  

1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Sign in / Sign up

Export Citation Format

Share Document