scholarly journals High-spectral-resolution attosecond absorption spectroscopy of autoionization in xenon

2014 ◽  
Vol 89 (2) ◽  
Author(s):  
Birgitta Bernhardt ◽  
Annelise R. Beck ◽  
Xuan Li ◽  
Erika R. Warrick ◽  
M. Justine Bell ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3686
Author(s):  
Zhifu Luo ◽  
Zhongqi Tan ◽  
Xingwu Long

The qualitative and quantitative analysis to trace gas in exhaled human breath has become a promising technique in biomedical applications such as disease diagnosis and health status monitoring. This paper describes an application of a high spectral resolution optical feedback cavity enhanced absorption spectroscopy (OF-CEAS) for ammonia detection in exhaled human breath, and the main interference of gases such as CO2 and H2O are approximately eliminated at the same time. With appropriate optical feedback, a fibered distributed feedback (DFB) diode laser emitting at 1531.6 nm is locked to the resonance of a V-shaped cavity with a free spectral range (FSR) of 300 MHz and a finesse of 14,610. A minimum detectable absorption coefficient of αmin = 2.3 × 10−9 cm−1 is achieved in a single scan within 5 s, yielding a detection limit of 17 ppb for NH3 in breath gas at low pressure, and this stable system allows the detection limit down to 4.5 ppb when the spectra to be averaged over 16 laser scans. Different from typical CEAS with a static cavity, which is limited by the FSR in frequency space, the attainable spectral resolution of our experimental setup can be up to 0.002 cm−1 owing to the simultaneous laser frequency tuning and cavity dither. Hence, the absorption line profile is more accurate, which is most suitable for low-pressure trace gas detection. This work has great potential for accurate selectivity and high sensitivity applications in human breath analysis and atmosphere sciences.


2016 ◽  
Vol 23 (4) ◽  
pp. 887-900 ◽  
Author(s):  
Nelson de Oliveira ◽  
Denis Joyeux ◽  
Mourad Roudjane ◽  
Jean-François Gil ◽  
Bertrand Pilette ◽  
...  

A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV–VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm−1on a large spectral window, ΔE/E= 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility.


2018 ◽  
Vol 33 (7) ◽  
pp. 1150-1153 ◽  
Author(s):  
Akira Kuwahara ◽  
Yasuaki Aiba ◽  
Shinya Yamasaki ◽  
Takuya Nankawa ◽  
Makoto Matsui

The spectral resolution of diode laser absorption spectroscopy is drastically enhanced by applying a supersonic plasma jet to distinguish isotope shifts due to the mass number.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua-Tian Tu ◽  
An-Qing Jiang ◽  
Jian-Ke Chen ◽  
Wei-Jie Lu ◽  
Kai-Yan Zang ◽  
...  

AbstractUnlike the single grating Czerny–Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.01 nm spectral resolution in the visible range, as well as a uniform efficiency of diffraction in a broad 200 nm to 1000 nm wavelength region. Our new zero-off-axis spectrometer configuration has the unique merit that enables it to be used for a wide range of spectral sensing and measurement applications.


Sign in / Sign up

Export Citation Format

Share Document