scholarly journals Coexistence of vortex arrays and surface capillary waves in spinning prolate superfluid He4 nanodroplets

2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Martí Pi ◽  
José María Escartín ◽  
Francesco Ancilotto ◽  
Manuel Barranco
Keyword(s):  
1988 ◽  
Vol 49 (4) ◽  
pp. 675-680 ◽  
Author(s):  
S. Chatterjee ◽  
E.S.R. Gopal

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Komal Chaudhary ◽  
Pooja Munjal ◽  
Kamal P. Singh

AbstractAlthough, many conventional approaches have been used to measure viscosity of fluids, most methods do not allow non-contact, rapid measurements on small sample volume and have universal applicability to all fluids. Here, we demonstrate a simple yet universal viscometer, as proposed by Stokes more than a century ago, exploiting damping of capillary waves generated electrically and probed optically with sub-nanoscale precision. Using a low electric field local actuation of fluids we generate quasi-monochromatic propagating capillary waves and employ a pair of single-lens based compact interferometers to measure attenuation of capillary waves in real-time. Our setup allows rapid measurement of viscosity of a wide variety of polar, non-polar, transparent, opaque, thin or thick fluids having viscosity values varying over four orders of magnitude from $$10^{0}{-}10^{4}~\text{mPa} \, \text{s}$$ 10 0 - 10 4 mPa s . Furthermore, we discuss two additional damping mechanisms for nanomechanical capillary waves caused by bottom friction and top nano-layer appearing in micro-litre droplets. Such self-stabilized droplets when coupled with precision interferometers form interesting microscopic platform for picomechanical optofluidics for fundamental, industrial and medical applications.


2001 ◽  
Vol 32 ◽  
pp. 701-702
Author(s):  
S.L. ZHBANKOVA ◽  
A.V. KOLPAKOV ◽  
L.V. MALIAROVA
Keyword(s):  

2020 ◽  
Vol 5 (11) ◽  
Author(s):  
Guangzhao Zhou ◽  
Andrea Prosperetti
Keyword(s):  

Author(s):  
James Graham-Eagle

The method to be described provides an alternative means of dealing with certain non-standard linear boundary-value problems. It is developed in several applications to the theory of gravity-capillary waves. The analysis is based on a variational formulation of the hydrodynamic problem, being motivated by and extending the original study by Benjamin and Scott [3].


Author(s):  
Matthieu A. Andre ◽  
Philippe M. Bardet

Shear instabilities induced by the relaxation of laminar boundary layer at the free surface of a high speed liquid jet are investigated experimentally. Physical insights into these instabilities and the resulting capillary wave growth are gained by performing non-intrusive measurements of flow structure in the direct vicinity of the surface. The experimental results are a combination of surface visualization, planar laser induced fluorescence (PLIF), particle image velocimetry (PIV), and particle tracking velocimetry (PTV). They suggest that 2D spanwise vortices in the shear layer play a major role in these instabilities by triggering 2D waves on the free surface as predicted by linear stability analysis. These vortices, however, are found to travel at a different speed than the capillary waves they initially created resulting in interference with the waves and wave growth. A new experimental facility was built; it consists of a 20.3 × 146.mm rectangular water wall jet with Reynolds number based on channel depth between 3.13 × 104 to 1.65 × 105 and 115. to 264. based on boundary layer momentum thickness.


1971 ◽  
Vol 50 (2) ◽  
pp. 321-334 ◽  
Author(s):  
James Witting

The average changes in the structure of thermal boundary layers at the surface of bodies of water produced by various types of surface waves are computed. the waves are two-dimensional plane progressive irrotational waves of unchanging shape. they include deep-water linear waves, deep-water capillary waves of arbitrary amplitude, stokes waves, and the deep-water gravity wave of maximum amplitude.The results indicate that capillary waves can decrease mean temperature gradients by factors of as much as 9·0, if the average heat flux at the air-water interface is independent of the presence of the waves. Irrotational gravity waves can decrease the mean temperature gradients by factors no more than 1·381.Of possible pedagogical interest is the simplicity of the heat conduction equation for two-dimensional steady irrotational flows in an inviscid incompressible fluid if the velocity potential and the stream function are taken to be the independent variables.


Sign in / Sign up

Export Citation Format

Share Document