small sample volume
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Komal Chaudhary ◽  
Pooja Munjal ◽  
Kamal P. Singh

AbstractAlthough, many conventional approaches have been used to measure viscosity of fluids, most methods do not allow non-contact, rapid measurements on small sample volume and have universal applicability to all fluids. Here, we demonstrate a simple yet universal viscometer, as proposed by Stokes more than a century ago, exploiting damping of capillary waves generated electrically and probed optically with sub-nanoscale precision. Using a low electric field local actuation of fluids we generate quasi-monochromatic propagating capillary waves and employ a pair of single-lens based compact interferometers to measure attenuation of capillary waves in real-time. Our setup allows rapid measurement of viscosity of a wide variety of polar, non-polar, transparent, opaque, thin or thick fluids having viscosity values varying over four orders of magnitude from $$10^{0}{-}10^{4}~\text{mPa} \, \text{s}$$ 10 0 - 10 4 mPa s . Furthermore, we discuss two additional damping mechanisms for nanomechanical capillary waves caused by bottom friction and top nano-layer appearing in micro-litre droplets. Such self-stabilized droplets when coupled with precision interferometers form interesting microscopic platform for picomechanical optofluidics for fundamental, industrial and medical applications.


2021 ◽  
Vol 49 ◽  
Author(s):  
Danijel Kovačević ◽  
Marko Cincović ◽  
Branislava Belić ◽  
Radojica Đoković ◽  
Mira Majkić

Background: Measuring metabolic parameters in the blood has been an indispensable tool for assessing the productive and health status of dairy cows for more than 100 years. The values of laboratory parameters depend on various preanalytical, analytical and postanalytical factors. The most important preanalytical factors are sample transport time and temperature, hemolysis, anticoagulant type, and sample volume.Preanalytical factors can lead to reduced stability of the analyte in the sample, which changes their concentration. Loss of stability changes the time of storage and manipulation of the sample, which determines the criteria for its acceptance or rejection. The two stability indicators are stability limit and maximum permissible instability. A stability limit (SL) is defined as the period of time in which a property variation does not exceed a maximum permissible instability (MPI). The aim of this study was to determine the SL and MPI for each analyte in the blood serum of cows and to determine whether SL differs in the function of the presence of preanalytical errors in the blood sample.Materials, Methods & Results: Three hundred samples of dairy cow origin in different periods of lactation participated in this research. They were classified into 6 groups of 50 samples: according to the time from sampling to processing in the laboratory (0-4 h, 4-8 h and over 8 h; all transported on dry ice, protected from environmental factors, without preanalytical errors) and according to the presence of preanalytical errors (group with hemolysis, a group transported at ambient temperature and a group with a small sample volume). Each sample was aliquoted in two portions. One portion was left at +4°C and tested once a day for 6 days of sample storage, and the second portion, placed at -20 °C, was tested once a month for 6 months. The MPI had a value ranging from 1.55 to 8.4. Metabolic profile analytes with lower MPI values (1.51-3.22) were albumin (ALB), total protein (TPROT), UREA, glucose (GLU), calcium (Ca), and phosphorus (P). Higher MPI values (5.1-8.3) were found for nonesterified fatty acids (NEFA), beta-hydroxybutirate (BHB), cholesterol (CHOL), triglycerides (TGC), total bilirubin (TBIL) and aspartat aminotransferase (AST). For most parameters, we can conclude that their PD% changed faster in storage conditions at +4 °C compared to the regime of -20 °C. The largest number of biochemical analytes in bovine blood serum shows preserved stability in the first 6 days at +4°C or 6 months at -20°C if transported to the laboratory within 8 h after sampling in ideal conditions and without the action of preanalytical errors. Prolonged transport under ideal conditions or the existence of preanalytical errors such as transport at room temperature, hemolysis or small sample volume shorten the stability of the ALB, NEFA, GLU, UREA and P. Concentration of all analytesdecreasesduring the stability test except for UREA, NEFA, BHB and for CHOL and TGC in some groups. Variations in parameters such as BHB, NEFA, TBIL, AST, and Ca have shown potential clinical significance. At storage conditions at +4°C, clinically significant variations at at least one measurement point were found for AST (7.5% of samples), BHB (6.1% of samples), NEFA (9.9% of samples) and for TBIL (in 7% of samples).Discussion: This study can help define acceptable delay times and storage conditions for bovine blood samples, which is of great importance because in working with farm animals it is often not possible to take samples in a short time and deliver them to the laboratory, and samples are often burdened with certain preanalytical errors with limited possibilities of re-sampling.


Soft Matter ◽  
2021 ◽  
Author(s):  
Pamela C Cai ◽  
Brad A Krajina ◽  
Michael J Kratochvil ◽  
Lei Zou ◽  
Audrey Zhu ◽  
...  

We present a method for using dynamic light scattering in the single-scattering limit to measure the viscoelastic moduli of soft materials. This microrheology technique only requires a small sample volume...


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 655
Author(s):  
Matthew D. Simmons ◽  
Lisa M. Miller ◽  
Malin O. Sundström ◽  
Steven Johnson

The misuse of antibiotics in health care has led to increasing levels of drug resistant infections (DRI’s) occurring in the general population. Most technologies developed for the detection of DRI’s typically focus on phenotyping or genotyping bacterial resistance rather than on the underlying cause and spread of DRI’s; namely the misuse of antibiotics. An aptameric based assay has been developed for the monitoring of ampicillin in urine samples, for use in determining optimal antibiotic dosage and monitoring patient compliance with treatment. The fluorescently labelled aptamers were shown to perform optimally at pH 7, ideal for buffered clinical urine samples, with limits of detection as low as 20.6 nM, allowing for determination of ampicillin in urine in the clinically relevant range of concentrations (100 nM to 100 µM). As the assay requires incubation for only 1 h with a small sample volume, 50 to 150 µL, the test would fit within current healthcare pathways, simplifying the adoption of the technology.


2020 ◽  
Vol 10 (1) ◽  
pp. 342 ◽  
Author(s):  
Changlun Sun ◽  
Guichen Li ◽  
Suhui Zhang ◽  
Jiahui Xu ◽  
Houqiang Yang

Due to the impossibility of obtaining intact standard experimental samples, it is difficult to test the mechanical properties of soft and broken coal and rock obtained from deep coal mines. So, an advanced experimental technology based on a small sample volume, nanoindentation technology, was introduced and used to measure the mechanical parameters of them. By using the averaging method, the hardness of shale, mudstone and coal are 1191.90 MPa, 674.95 MPa and 424.30 MPa, respectively; their elastic moduli are 20.39 GPa, 11.72 GPa and 5.47 GPa; and their fracture toughness were 1.66 MPa·m0.5, 1.28 MPa·m0.5 and 0.77 MPa·m0.5. These three mechanical parameters were used to quantify and map the heterogeneous properties of coal and rock for convenience and accuracy. For example, the inter quartile range (IQR) of the hardness of shale, mudstone, and coal are 1502.10 MPa, 1016.20 MPa and 54.64 MPa, respectively, meaning that coal has the best homogeneity among them. Nanoindentation technology provides researchers with a convenient method to conduct mechanical experiments at the microscale.


2015 ◽  
Vol 120 ◽  
pp. 171-174 ◽  
Author(s):  
Erwin K. Reichel ◽  
Ali Abdallah ◽  
Christian Feichtenschlager ◽  
Martin Kramer ◽  
Andreas Moritz ◽  
...  

2014 ◽  
Vol 35 (1) ◽  
pp. 59-62
Author(s):  
Liying REN ◽  
Kazuhiko ISHIHARA ◽  
Masaru KATO

Author(s):  
Yoshihiro Taguchi ◽  
Koichi Itani ◽  
Akira Ebisui ◽  
Yuji Nagasaka

Micro-electro mechanical systems (MEMS) biochips realizing high-speed and high-efficiency of reaction and analysis attract much attention in medical as well as chemical fields. Especially, the miniaturized devices enabling small sample volume, arrayed, and portable measurement may become a powerful tool for material analysis and process control. We have proposed a novel micro optical diffusion sensor (MODS) which enables small sample volume, highspeed and non-contact measurement of diffusion coefficient of liquid sample. MODS consists of a pair of transparent electrodes (Al-doped Zinc oxide: AZO), a photoconductive layer (amorphous silicon: a-Si:H), two MEMS mirrors and excitation and probing fibers for inducing and detecting concentration distribution. The initial concentration distribution of sample is created by an opto-dielectrophoretic (opto-DEP) manipulation along with a sinusoidal pattern of irradiated beam on a photoconductive layer. In the present paper, the measurement principle is proposed, and the preliminary experiment using a bench top apparatus is reported.


2007 ◽  
Author(s):  
Mariko Inoue ◽  
Mitsunori Kimura ◽  
Keita Mitsui ◽  
Kotaro Kajikawa

Sign in / Sign up

Export Citation Format

Share Document